Adding semantic to level-up graph-based Android malware detection

Roxane Cohen1,2, Florian Yger1, and Fabrice Rossi2

1 LAMSADE, CNRS, Université Paris-Dauphine, PSL Research University
2 CEREMADE, CNRS, Université Paris-Dauphine, PSL Research University

1 Introduction
Polyomorphic malwares operate changes in their source code, while their semantics remain the same, which impair detection capabilities of static analysis methods. However, oriented Function Call Graphs (FCG), where vertices represent functions of the program and edges denote interprocedural calls, have been shown to provide reliable descriptions of their programs, see e.g. [3]. Inspired by those results, a very large database of Android FCG was released called MalNet [2]. MalNet graphs are reduced to FCG structure only, without any information about the represented functions. By recreating the tiny version of MalNet, this time keeping the semantic attributes of the graph, we can establish a comparison between structure-only based machine learning methods and techniques that combine graph structure and semantics.

2 Approaches
We study two approaches by considering two types of features from the FCG: only structural ones for the unlabelled ways to improve this work by validating hyperparameters or, since we only consider external class API calls, by increasing

3 Results
We compare the quality of the above features, structural ones first and PCA-reduced based second, by using them to classify MalNetTiny into five classes of malwares. In order to do so, we either use a RandomForest as a traditional machine learning method or a Graph Neural Network (GNN) model. We split the data set into a training (80 \%) and test sets. We use 10 fold cross validation on the learning set to set the hyperparameters of the classifier and report the accuracy on the test set. The process is repeated 5 times.

RandomForest combined with graph features achieves around 0.869 accuracy with a very little difference between runs. RandomForest and PCA features with both structural and semantic informations perform better, with an accuracy of 0.908 for only PCA features and 0.921 if we add covariance. Surprisingly, GNN give significantly worse results, with an accuracy of respectively 0.674 and 0.753 for node degree features in undirected and directed cases. GNN with PCA features are still worse than simpler baselines with an accuracy of 0.896. We implemented a dozen of different models and tested various types of GNN, such as GCN, GraphSAGE and GIN. The hyperparameters of the GNN are selected on a validation set which represents 25\% of the training set. The weaker results for GNN can be explained by the particular structure of the reduced graphs after applying PCA. Since FCGs come from Android API, reduced graphs contain many isolated nodes, which may prevent GNN from properly propagating informations between nodes.

4 Conclusion and future work
In this work, we demonstrate that while structural features on MalNetTiny can be used to classify malwares, significant improvements of the classification rate can be obtained by representing each graph by a low dimensional feature vector extracted from external calls to the Android API. Finally, we show that simpler shallow models can have worthwhile performances and we advocate for their systematic use as baselines in graph classification tasks. There are several possible ways to improve this work by validating hyperparameters or, since we only consider external class API calls, by increasing the feature granularity and taking into account external methods calls.

References