# Ranking from pairwise comparisons: a near-linear time minimax optimal algorithm for learning BTL weights 

Julien Hendrickx (UCLouvain)

We consider the problem of ranking and learning the qualities $w_{1}, \ldots, w_{n}$ of a collection of items by performing noisy comparisons among them. We assume that there is a fixed "comparison graph", and every neighboring pair of items is compared $k$ times.

We focus more specifically on the popular Bradley-Terry-Luce model, where comparisons are i.i.d. events, and the probability for item $i$ to win the comparison against $j$ is $w_{i} /\left(w_{i}+w_{j}\right)$.

We propose a near-linear time algorithm allowing us to recover the weights with an accuracy that outperforms all existing algorithms, and show that this accuracy is actually within a constant factor of information-theoretic lower bounds, that we also develop. This accuracy is related to the average resistance of the comparison graph.

Our algorithm is based on a weighted least square, with weights determined from empirical outcomes of the comparisons.

We further discuss the extension to other models of comparisons, and comparisons involving multiple items.

Ranking from pairwise comparisons: a near-linear time minimax optimal algorithm for learning BTL weights

Julien Hendrickx - Lille - 10 March 2023

## What if Ligue 1 has to stop now? Who is champion? What is the ranking? $\rightarrow$ who goes to L2, to European league etc.

## Possible solution: use current standing

| 1 | Paris-SG |  | 63 | 26 | 20 | 3 | 3 | 66 | 625 | +41 | - - - - - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | Marseille |  | 55 | 26 | 17 | 4 | 5 |  | 925 | +24 | - - - - |
| 3 | Monaco |  | 51 | 26 | 15 | 6 | 5 |  | 536 | +19 | - - - - |
| 4 | Lens |  | 51 | 26 | 14 | 9 | 3 |  | 021 | +19 | - - - - - |
| 5 | Rennes |  | 46 | 26 | 14 | 4 | 8 |  | 529 | +16 | -**** |
| 6 | Lille |  | 45 | 26 | 13 | 6 | 7 |  | 633 | +13 | -*••• |
| 7 | Nice |  | 42 | 26 | 11 | 9 | 6 |  | 422 | +12 | - - - - |
| 8 | Reims | 2 A | 40 | 26 | 9 | 13 | 4 |  |  | +8 |  |
| 9 | Lorient | 17 | 40 | 26 | 11 | 7 | 8 |  | 836 | +2 | - Ө०७ |
| 10 | Lyon | 17 | 39 |  | 11 | 6 | 9 |  | 928 | +11 | - - - - - |
| 11 | Clermont | 14 | 34 | 26 | 9 | 7 | 10 |  | 634 | -8 | -**** |
| 12 | Toulouse | 17 | 32 | 26 | 9 | 5 | 12 |  | 146 | -5 | - - - - |

## What if Ligue 1 has to stop now? Who is champion? What is the ranking? $\rightarrow$ who goes to L2, to European league etc.

## Possible solution: use current standing



Nice and Reims similar But 2 weeks ago


Much stronger achievement

- Nice should get more recognition - "Current standing" option unfair for teams who only played stronger teams


# What if Ligue 1 has to stop now? 

## Who is champion? What is the ranking? <br> $\rightarrow$ who goes to L2, to European league etc.

- Nice should get more recognition
- "Current standing" option unfair for teams who only played stronger teams

Inherent problem when games are not all-to-all

- Tennis ranking
- Chess
- (...)
$\rightarrow$ How to build ranking / \# points from results of "arbitrary" comparisons


## How to evaluate pain-killer efficiency

Asking patients number between 1 and 10 ?

- Good but not very objective + patient dependent
- Can't test all on all patient
- Preference for giving "good ones"


Practical data collection: try 2 and ask which is best + learn quality

## Online review

UNDERSTANDNG ONUNE STAR RATINGS:


## less than 5* often an insult

$\rightarrow$ Not very informative

Alternative: did you prefer this place or this place

## Comparison can be all you have



Preference expressed by action
Multiple items, not everyone compares all

How to rank / recover value based on (non-exhaustive) comparisons?

## Bradley-Terry-Luce model

- Items have intrinsic quality (weight): $w_{i}$
- When comparing $i-j, i$ wins with probability

$$
p_{i j}=\frac{w_{i}}{w_{i}+w_{j}}
$$

Example


4

pick coffee with 80\% probability, tea with 20\%

XXX football team: $3 \quad$ YYY football team: 2
$\rightarrow$ XXX should win with probability $60 \%$

Idea: recover weights $w_{i}$ from the comparison results

Ranking from pairwise comparisons

- Motivation and Problem
- Weighted Least-Square Estimator
- Algorithm and Complexity
- Error Analysis
- Error Bound
- Lower Bound - Minimax Optimality
- Other criteria
- Experimental Results
- A Surprising Observation
- Generalizations
- Conclusions

Ranking from pairwise comparisons

- Motivation and Problem
- Weighted Least-Square Estimator
- Algorithm and Complexity
- Error Analysis
- Error Bound
- Lower Bound - Minimax Optimality
- Other criteria
- Experimental Results
- A Surprising Observation
- Generalizations
- Conclusions


## Weight recovery

Items $1, \ldots, n$ with quality (weights) $w_{1}, \ldots, w_{n} \in[1, b]$
Comparison graph

$k$ i.i.d. comparisons for each edge
$i$ wins comparison against $j$ with probability

$$
p_{i j}=\frac{w_{i}}{w_{i}+w_{j}}
$$

Problem: Recover vectors of weights $w=\left(w_{1}, \ldots, w_{n}\right)^{\prime}$ from results, up to constant multiplicative factor. Range $b$ exists but is not known

Sufficient statistics: k and ratio of wins $\quad R_{i j}=\frac{\# \text { wins } \mathrm{i}}{\# \text { wins } \mathrm{j}}$

## Data has network structure



Goal = recover values at nodes

## Previous solutions

- Maximum Likelihood
- Convex optimization problem after reformulation
- Asymptotically optimal, but only asymptotic guarantees
- Rank centrality [Negahban, Oh, Shah 2016]
- Based on convergence of Markov Chain built from data

$$
\frac{\left\|\frac{w}{\|w\|_{1}}-\hat{W}\right\|_{2}^{2}}{\| \frac{w}{\|w\|_{1} \|_{2}^{2}} \leq O\left(\frac{1}{k}\right) \frac{b^{5} \log n}{(1-\rho)^{2}} \frac{d_{\max }}{d_{\min }^{2}},}
$$

$1-\rho$ spectral gap of random walk $d_{\text {max }}, d_{\text {min }}$ largest, smallest degree b maximal weight

Algorithm idea: Least-Square Probability i wins over j: $\frac{w_{i}}{w_{i}+w_{j}}$

For large number $k$ of comparisons $\mathrm{i}-\mathrm{j}$ :
$\begin{aligned} & \# \text { win } \mathrm{i} \simeq k p_{i j} \\ &=k \frac{w_{i}}{w_{i}+w_{j}} \\ & \# \text { win } \mathrm{j} \simeq k p_{j i}=k \frac{w_{j}}{w_{i}+w_{j}}\end{aligned} \quad \Longrightarrow R_{i j}=\frac{\# \text { win } \mathrm{i}}{\# \operatorname{win} \mathrm{j}} \quad \simeq \frac{w_{i}}{w_{j}}$

$$
\Leftrightarrow \log w_{i}-\log w_{j} \simeq \log R_{i j}
$$

(Naïve) Idea 1: Least-square solution of

$$
\log \widehat{w}_{i}-\log \widehat{w}_{j}=\log R_{i j} \quad \forall(i, j) \in E
$$

Issue 1: zero wins
Lease square solution of
$\log \widehat{w}_{i}-\log \widehat{w}_{j}=\log R_{i j} \quad \forall(i, j) \in E$
$R_{i j}=\frac{\text { \# wins } \mathrm{i}}{\text { \# wins } \mathrm{j}}$
What if $i$ wins no comparison ? (or all)

$$
R_{i j}=0 \Rightarrow \log R_{i j}=-\infty
$$

$\rightarrow$ Complete Failure, with positive probability

Solution: Replace 0 victory by $1 / 2$ victory

- Simple
- provides boundedness properties
- But creates technical complications


## Issue 2: Non-uniform Variance

Lease square solution of

$$
\log \widehat{w}_{i}-\log \widehat{w}_{j}=\log R_{i j} \quad \forall(i, j) \in E
$$

|  |  | 5 vs 5 | 9 vs 1 |
| :--- | :---: | :---: | :---: |
| Variance \# win i | $\frac{k}{v_{i j}}$ | $\frac{k}{4}$ | $\frac{k}{11.11}$ |
| "Variance" $\log R_{i j}$ | $\simeq \frac{v_{i j}}{k}$ | $\frac{4}{k}$ | $\frac{11.11}{k}$ |
|  | $\simeq 3 \times$ larger |  |  |
| With $v_{i j}:=\frac{w_{i}}{w_{j}}+2+\frac{w_{j}}{w_{i}}$ |  |  |  |

Error in equation $(9,1)$ expected to be larger than for $(5,5)$
$\rightarrow$ Corresponding equations should be treated differently.

## Solution: Weighted least square

Least square solution of

$$
\frac{\log \widehat{w}_{i}-\log \widehat{w}_{j}}{\sqrt{v_{i j}}}=\frac{\log R_{i j}}{\sqrt{v_{i j}}}
$$

Idea: each equation should have "the same variance" $\quad v_{i j}:=\frac{w_{i}}{w_{j}}+2+\frac{w_{j}}{w_{i}}$ (inspired by Best Linear Unbiased Estimator idea)

$$
v_{i j}:=\frac{w_{i}}{w_{j}}+2+\frac{w_{j}}{w_{i}}
$$

$$
\begin{aligned}
& \rightarrow \text { Ideal Estimator } \\
& \log \widehat{w}=\arg \min _{\mathrm{z}} \sum_{(i, j) \in E} \frac{\left(z_{i}-z_{j}-\log R_{i j}\right)^{2}}{v_{i j}}
\end{aligned}
$$

## Weighted least square

$\rightarrow$ Ideal Estimator

$$
\log \widehat{w}=\arg \min _{\mathrm{z}} \sum_{(i, j) \in E} \frac{\left(z_{i}-z_{j}-\log R_{i j}\right)^{2}}{v_{i j}}
$$

Issue 3: $\quad v_{i j}:=\left(\frac{w_{i}}{w_{i}}\right)+2+\left(\frac{w_{j}}{w_{i}}\right) \quad$ Depends on the values we want to recover
Iterative solution: $\quad \begin{aligned} & \text { Initiate } \hat{v}_{i j}=4 \text { for all edges } \\ & \text { Repeat }\end{aligned}$
Compute estimate $\widehat{w}$ with $\hat{v}_{i j}$ update $\hat{v}_{i j}$ based on $\widehat{w}$

## Empirical solution:

$$
R_{i j} \simeq \frac{w_{i}}{w_{j}} \quad \rightarrow \quad v_{i j}:=\frac{w_{i}}{w_{j}}+2+\frac{w_{j}}{w_{i}} \simeq R_{i j}+2+R_{i j}^{-1}
$$

## Weighted least square

$\rightarrow$ Ideal Estimator

$$
\log \widehat{w}=\arg \min _{\mathrm{z}} \sum_{(i, j) \in E} \frac{\left(z_{i}-z_{j}-\log R_{i j}\right)^{2}}{v_{i j}}
$$

Issue 3: $\quad v_{i j}:=\left(\frac{w_{i}}{w_{i}}\right)+2+\left(\frac{w_{j}}{w_{i}}\right)$
Depends on the values we want to recover

Iterative solution:

> Re - Computationally cheaper
> - Simpler to analyze
> - More accurate (surprisingly)

Empirical solution:

$$
R_{i j} \simeq \frac{w_{i}}{w_{j}} \quad \rightarrow \quad v_{i j}:=\frac{w_{i}}{w_{j}}+2+\frac{w_{j}}{w_{i}} \simeq R_{i j}+2+R_{i j}^{-1}
$$

Final Estimator ratio $w_{i} / w_{j}$ and real weights

$$
\log \widehat{w}=\arg \min _{\mathrm{z}} \sum_{(i, j) \in E} \frac{\left(z_{i}-z_{j}-\log R_{i j}\right)^{2}}{\hat{v}_{i j}}
$$

With $\quad \hat{v}_{i j}:=R_{i j}+2+R_{i j}^{-1} \quad$ Empirical "variance"

$$
R_{i j}=\# \text { wins } \mathrm{i} / \text { \# wins } \mathrm{j}
$$

- $\widehat{w}$ computed by solving linear least-square problem
- But nonlinear dependence on data and $R_{i j}$
- No hyper parameter, tuning etc. (can be introduced)
- Can be computed in near linear time

$$
\text { Accuracy } \epsilon \text { in } O\left(|E| \log ^{c} n \log \frac{1}{\epsilon}\right)
$$

Ranking from pairwise comparisons

- Motivation and Problem
- Weighted Least-Square Estimator
- Algorithm and Complexity
- Error Analysis
- Error Bound
- Lower Bound - Minimax Optimality
- Other criteria
- Experimental Results
- A Surprising Observation
- Generalizations
- Conclusions


# Reminder Incidence matrix B 

## Relates nodes to edges

Column: edge Row: nodes

If edge e from i to j
Orientation arbitrary $\left\{\begin{array}{l}B_{i e}=-1 \\ B_{j e}=1\end{array}\right.$


## Compact reformulation with B

## Relates nodes to edges

Column: edge
Row: nodes
If edge e from i to j
Orientation arbitrary $\left\{\begin{array}{l}B_{i e}=-1 \\ B_{j e}=1\end{array}\right.$
$\rightarrow$ System

$$
z_{i}-z_{j}=\log R_{i j} \quad \text { for all }(i, j) \in E
$$

Can be rewritten compactly

$$
B^{T} z=\quad \log R
$$

- One equation / edge
- One variable / node

With $R \in \mathbb{R}^{|E|}$ vector of $R_{i j}$

## Compact reformulation with B

## Relates nodes to edges

Column: edge
Row: nodes
If edge e from i to j
Orientation arbitrary $\left\{\begin{array}{l}B_{i e}=-1 \\ B_{j e}=1\end{array}\right.$
$\rightarrow$ System

$$
\frac{z_{i}-z_{j}}{\sqrt{v_{i j}}}=\frac{\log R_{i j}}{\sqrt{v_{i j}}} \quad \text { for all }(i, j) \in E
$$

Can be rewritten compactly

$$
\begin{aligned}
V^{-1 / 2} B^{T} z & =V^{-1 / 2} \log R \\
\text { With } R & \in \mathbb{R}^{|E|} \text { vector of } R_{i j} \\
V & =\operatorname{diag}\left(\ldots, v_{i j}, \ldots\right)
\end{aligned}
$$

$v_{i j}$ approximated from data

## Least-Square

Estimator: $\log \widehat{w}$ least square solution of

$$
V^{-1 / 2} B^{T} z=\quad V^{-1 / 2} \log R
$$

Normal equations $\rightarrow$ solution of

$$
\left(V^{-\frac{1}{2}} B^{T}\right)^{T} V^{-1 / 2} B^{T} Z=\left(V^{-\frac{1}{2}} B^{T}\right)^{T} V^{-1 / 2} \log R
$$

## Least-Square

Estimator: $\log \widehat{w}$ least square solution of

$$
V^{-1 / 2} B^{T} z=\quad V^{-1 / 2} \log R
$$

Normal equations $\rightarrow$ solution of

$$
\begin{aligned}
\left(V^{-\frac{1}{2}} B^{T}\right)^{T} V^{-1 / 2} B^{T} z & =\left(V^{-\frac{1}{2}} B^{T}\right)^{T} V^{-1 / 2} \log R \\
B V^{-1} B^{T} z & =B V^{-1} \log R
\end{aligned}
$$

(weighted) Laplacian matrix

# Reminder: Laplacian Matrix 

## Represents

- relations between nodes
- degrees

$$
\begin{gathered}
L_{i j}=-1 \text { if edge }(i, j) \\
L_{i i}=\operatorname{degree}(i)
\end{gathered}
$$



|  | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 |  |  |  |  |  |
| 1 |  |  |  |  |  |
| 2 |  |  |  |  |  |
| 3 |  |  |  |  |  |
| 4 |  |  |  |  |  |
| 5 |  |  |  |  |  | | 3 | -1 | -1 | -1 |
| :--- | :--- | :--- | :--- |
| -1 | 3 | -1 |  |
| -1 |  |  |  |
| -1 | -1 | 3 |  |
| -1 |  |  |  |
| -1 |  |  | 2 |
|  | -1 | -1 | -1 |

# Reminder: Laplacian Matrix 

## Represents

- relations between nodes
- degrees


## Interesting properties

- $L=B B^{T}$
- $L 1=0$ (sum line $=0$ )
- Positive semi-definite
- $\lambda_{2}>0$ if graph connected + "algebraic connectivity"

$$
\begin{gathered}
L_{i j}=-1 \text { if edge }(i, j) \\
L_{i i}=\operatorname{degree}(i)
\end{gathered}
$$

# Reminder: Weighted Laplacian Matrix 

Weights $A_{i j}=A_{j i}$ on edges

$$
\begin{aligned}
L_{i j} & =-A_{i j} \text { if edge }(i, j) \\
L_{i i} & =\operatorname{strength}(i)=\sum_{j \neq i} A_{i j}
\end{aligned}
$$

## Represents

- Weights of relations between nodes
- Degrees/strengths of nodes


## Interesting properties

- $L=B \operatorname{diag}\left(A_{i j}\right) B^{T}$
$\operatorname{diag}\left(A_{i j}\right) \in \mathbb{R}^{|E| \times|E|}$
- $L 1=0$ (sum line = 0 )
- Positive semi-definite
- $\lambda_{2}>0$ if graph connected
+ "algebraic connectivity"


# Final algorithm: Laplacian System <br> $B V^{-1} B^{T} z=B V^{-1} \log R$ <br> $=: L_{V} \quad$ (weighted) Laplacian matrix 

$$
\begin{array}{ll}
\log \widehat{w}=\text { solutions of } & \mathrm{L}_{V} Z=B V^{-1} \log R \\
R \in \mathbb{R}^{|E|} \text { vector of } R_{i j} & \frac{\# \text { wins } \mathrm{i}}{\# \text { wins } \mathrm{j}}
\end{array} \quad \begin{aligned}
& V=\operatorname{diag}\left(\ldots, v_{i j}, \ldots\right) \\
& \text { "variance" empirically estimated }
\end{aligned}
$$

Laplacian $\mathrm{L}_{V}$ is symmetric and diagonally dominant $\left(L_{V, i i}=-\sum_{j \neq i} L_{V, i j}\right)$
[Spielman, Teng 2014], system solved up to accuracy $\epsilon$ in $O\left(|E| \log ^{c} n \log \frac{1}{\epsilon}\right)$
$\rightarrow$ Near linear time in size $|E|$ of data.
For reasonable size systems, easier to use classical solver

Ranking from pairwise comparisons

- Motivation and Problem
- Weighted Least-Square Estimator
- Algorithm and Complexity
- Error Analysis
- Error Bound
- Lower Bound - Minimax Optimality
- Other criteria
- Experimental Results
- A Surprising Observation
- Generalizations
- Conclusions


## Error analysis

Disclaimer: Intuitive heuristic analysis
Formal proofs

- Exist
- Were guided by this analysis
- Involve many technical difficulties
- Probably not for a presentation.

In particular we assume

- $E \log R_{i j}=\log \rho_{i j}$

$$
\rho_{i j}:=\frac{w_{i}}{w_{j}}
$$

- Variance $\log R_{i j}=\frac{v_{i j}}{k}$
- Exact $v_{i j}$ used in the algorithm
(all this is "asympotically" true)


## Error analysis

$\log \widehat{w}=$ solutions of $\quad \mathrm{L}_{V} Z=B V^{-1} \log R$
How accurate is this estimate? $\rightarrow$ characterize $\Delta \log w=\log \widehat{w}-\log w$

## Scale Problem :

- $w, \widehat{w}$ only defined up to multiplicative constant
- $\log w, \log \widehat{w}$ defined up to additive constant

$$
p_{i j}=\frac{w_{i}}{w_{i}+w_{j}}
$$

$\rightarrow$ Arbitrary choice: $\log w, \log \widehat{w}$ sum to 0 , i.e. orthogonal to $\mathbf{1}$
$\rightarrow \quad \log \widehat{w}=L_{V}^{\dagger} B V^{-1} \log R$

$$
\log w=L_{V}^{\dagger} B V^{-1} \log \rho
$$

With $L_{A}^{\dagger}$ Monroe Penrose Pseudo-inverse (kernel and image orthogonal to 1 )
$\rho_{i j}:=\frac{w_{i}}{w_{j}} \quad$ true ratio

$$
\log \widehat{w}=L_{V}^{\dagger} B V^{-1} \log R \quad \rightarrow \quad \Delta \log w=L_{V}^{\dagger} B V^{-1} \Delta \log R
$$

$$
\begin{aligned}
E \Delta \log w \Delta \log w^{T} & =E\left(L_{V}^{\dagger} B V^{-1} \Delta \log R\right)\left(L_{V}^{\dagger} B V^{-1} \Delta \log R\right)^{T} \\
& =E L_{V}^{\dagger} B V^{-1} \Delta \log R \Delta \log R^{T} V^{-1} B^{T} L_{V}^{\dagger} \\
& \left.=L_{V}^{\dagger} B V^{-1} \Delta \log R \Delta \log R^{\top}\right) V^{-1} B^{T} L_{V}^{\dagger}
\end{aligned}
$$

$$
\begin{aligned}
& \log \widehat{w}=L_{V}^{\dagger} B V^{-1} \log R \\
& \log w=L_{V}^{\dagger} B V^{-1} \log \rho
\end{aligned} \quad \rightarrow \quad \Delta \log w=L_{V}^{\dagger} B V^{-1} \Delta \log R
$$

$$
\begin{aligned}
E \Delta \log w \Delta \log w^{T} & =E\left(L_{V}^{\dagger} B V^{-1} \Delta \log R\right)\left(L_{V}^{\dagger} B V^{-1} \Delta \log R\right)^{T} \\
& =E L_{V}^{\dagger} B V^{-1} \Delta \log R \Delta \log R^{T} V^{-1} B^{T} L_{V}^{\dagger} \\
& =L_{V}^{\dagger} B V^{-1}\left(\log R \Delta \log R^{\top}\right) V^{-1} B^{T} L_{V}^{\dagger}
\end{aligned}
$$

Square "co-variance" matrix, $|E| \times|E|$

- Diagonal because edges independent and we assume $E \Delta \log R_{i j}=0$
- for edge $(i, j)$ value $v_{i j} / k$
$\rightarrow \mathrm{E} \Delta \log R \Delta \log R^{T}=\frac{1}{k} V$

$$
\begin{aligned}
& \log \widehat{w}=L_{V}^{\dagger} B V^{-1} \log R \\
& \log w=L_{V}^{\dagger} B V^{-1} \log \rho
\end{aligned} \quad \rightarrow \quad \Delta \log w=L_{V}^{\dagger} B V^{-1} \Delta \log R
$$

$$
\begin{aligned}
E \Delta \log w \Delta \log w^{T} & =E\left(L_{V}^{\dagger} B V^{-1} \Delta \log R\right)\left(L_{V}^{\dagger} B V^{-1} \Delta \log R\right)^{T} \\
& =E L_{V}^{\dagger} B V^{-1} \Delta \log R \Delta \log R^{T} V^{-1} B^{T} L_{V}^{\dagger} \\
& =L_{V}^{\dagger} B V^{-1}\left(\log R \Delta \log R^{\top}\right) V^{-1} B^{T} L_{V}^{\dagger} \\
& =\frac{1}{k} L_{V}^{\dagger} B V^{-1} V V^{-1} B^{T} L_{V}^{\dagger} \\
& =\frac{1}{k} L_{V}^{\dagger} B V^{-1} B^{T} L_{V}^{\dagger} \\
& =\frac{1}{k} L_{V}^{\dagger} L_{V} L_{V}^{\dagger}=\frac{1}{k} L_{V}^{\dagger}
\end{aligned}
$$

Summary: For a given graph and vector of weight, for large enough k (non-asymptotic)
$E \Delta \log w \Delta \log w^{T} \simeq \frac{1}{k} L_{V}^{\dagger} \quad \begin{aligned} & \text { Pseudo-inverse of weighted Laplacian, } \\ & \text { Weights }=\text { inverse variance } v_{i j}^{-1}\end{aligned}$
Square Error $E\|\log \widehat{w}-\log w\|^{2} \simeq \frac{1}{k} \operatorname{Tr}\left(L_{V}^{\dagger}\right)$

## Reminder: Graph resistance

Weights $A_{i j}=A_{j i}$ represent conductance of wires

$$
\Omega_{14}=V / I
$$

Effective Resistance $\Omega_{i j}=\mathrm{V}$ / current if V volts between i and j

Average resistance: Average over all pairs

$$
\Omega_{a v}=\frac{1}{n} \operatorname{Tr}\left(L_{A}^{\dagger}\right)=\frac{1}{n} \sum_{i>1} \frac{1}{\sigma_{i}\left(L_{A}\right)} \quad \text { With } L_{A}^{\dagger} \text { Monroe Penrose Pseudo-inverse }
$$

Alternative measure of connectivity - less centered on "worst-case"

Summary: For a given graph and vector of weight, for large enough k (non-asymptotic)

$$
E \Delta \log w \Delta \log w^{T} \simeq \frac{1}{k} L_{V}^{\dagger} \quad \begin{aligned}
& \text { Pseudo-inverse of weighted Laplacian } \\
& \text { Weights = inverse variance } v_{i j}^{-1}
\end{aligned}
$$

Square Error $E\|\log \widehat{w}-\log w\|^{2} \simeq \frac{1}{k} \operatorname{Tr}\left(L_{V}^{\dagger}\right)=\frac{n}{k} \Omega_{V, a v}$
$\left(\rightarrow\right.$ Mean square error $\left.\frac{1}{k} \Omega_{V}, a v\right)$

Summary: For a given graph and vector of weight, for large enough k (non-asymptotic)

$$
E \Delta \log w \Delta \log w^{T} \simeq \frac{1}{k} L_{V}^{\dagger} \quad \begin{aligned}
& \text { Pseudo-inverse of weighted Laplacian } \\
& \text { Weights = inverse variance } v_{i j}^{-1}
\end{aligned}
$$

Square Error $E\|\log \widehat{w}-\log w\|^{2} \simeq \frac{1}{k} \operatorname{Tr}\left(L_{V}^{\dagger}\right)=\frac{n}{k} \Omega_{V, a v}$

$$
=O\left(\frac{b n^{2}}{k}\right)=O\left(\frac{b n \Omega_{a v}}{k}\right)
$$

- $\Omega_{a v}$ resistance unweighted graph
- b maximal ratio of weights.
- Accuracy determined by average resistance
- $O\left(\frac{b n^{2}}{k}\right)$ vs $O\left(\frac{b^{5} n^{7}}{k}\right)$ (But criteria not strictly comparable)


## Bound comparison

| Graph | Negahban 16 | Our result |
| :---: | :---: | :---: |
| Line | $b^{5 / 2} n^{2}$ | $b \sqrt{n}$ |
| Circle | $b^{5 / 2} n^{2}$ | $b \sqrt{n}$ |
| 2D grid | $b^{5 / 2} n$ | $b$ |
| 3D grid | $b^{5 / 2} n^{2 / 3}$ | $b$ |
| Star graph | $b^{5 / 2} \sqrt{n}$ | $b$ |
| 2 stars joined at centers | $b^{5 / 2} n^{1.5}$ | $b$ |
| Barbell graph | $b^{5 / 2} n^{3.5}$ | $b \sqrt{n}$ |
| Geo. random graph | $b^{5 / 2} n$ | $b$ |
| Erdos-Renyi | $b^{5 / 2}$ | $b$ |

Factor 1/k omitted

Ranking from pairwise comparisons

- Motivation and Problem
- Weighted Least-Square Estimator
- Algorithm and Complexity
- Error Analysis
- Error Bound
- Lower Bound - Minimax Optimality
- Other criteria
- Experimental Results
- A Surprising Observation
- Generalizations
- Conclusions


## Lower bound

$\frac{1}{k} L_{V}^{\dagger}=$ Fisher information matrix,
But, many relevant estimates biased $\rightarrow$ Cramer-Rao not directly applicable
Nevertheless:

Theorem: For any nominal weights $w$ and any comparison graph, There is a way of generating $w_{z}$ randomly in a ball of radius $O_{w, G}\left(\frac{1}{\sqrt{k}}\right)$ (with $\left.\sum_{i}\left(w_{z}\right)_{i}=\sum_{i} w_{i}\right)$
such that for any estimator $\widehat{w}$ using the outcome $Y$ of $k$ comparisons

$$
E\left\|\log \widehat{w}(Y)-\log w_{z}\right\|^{2} \geq \Omega\left(\frac{1}{k}\right) \operatorname{Tr}\left(L_{V}^{\dagger}\right)
$$

$\rightarrow$ For large enough \# comparisons, simple least square algorithm is minimax optimal (up to constant factor)

## Proof technique

1) Generate $w_{z}$ by combining i.i.d. variations along eigenvectors of $L_{V}$
2) Exploit Lemma 6.1. Let $\mu$ be any joint probability distribution of a random pair $\left(w, w^{\prime}\right)$, such that the marginal distributions of both $w$ and $w^{\prime}$ are equal to $\pi$. Then

$$
\mathbb{E}_{\pi, \mathbf{Y}}[d(w, \hat{w}(\mathbf{Y})]] \geq \mathbb{E}_{\mu}\left[d\left(w, w^{\prime}\right)\left(1-\left\|P_{w}-P_{w^{\prime}}\right\|_{T V}\right]\right.
$$

where $\|\cdot\|_{\mathrm{TV}}$ represents the total-variation distance between distributions and $\mathbf{Y}$ the observations.
(see e.g. [Hajek \& Raginsky, 2019])
3) Use Pinsker's inequality $\quad\left\|P_{w}^{\otimes k}-P_{w^{\prime}}^{\otimes k}\right\|_{\mathrm{TV}}^{2} \leq \frac{1}{2} D_{K L}\left(P_{w}^{\otimes k} \| P_{w}^{\otimes \otimes k}\right)$

Ranking from pairwise comparisons

- Motivation and Problem
- Weighted Least-Square Estimator
- Algorithm and Complexity
- Error Analysis
- Error Bound
- Lower Bound - Minimax Optimality
- Other criteria
- Experimental Results
- A Surprising Observation
- Generalizations
- Conclusions


## Other performance criteria?

How about E \| $A \Delta \log w \|^{2}$
$\mathrm{Ex}: \Delta \log w_{i}-\Delta \log w_{j}=$ error on $\left(\log w_{i}-\log w_{j}\right)$
$\sim$ relative error on of $\frac{w_{i}}{w_{j}}$
Direct (naïve) approach:

$$
E \Delta \log w \Delta \log w^{T} \simeq \frac{1}{k} L_{V}^{\dagger}
$$

$\mathrm{E}\|A \Delta \log w\|^{2}=\operatorname{Tr}\left(A E \Delta \log w \Delta \log w^{T} A^{T}\right) \simeq \frac{1}{k} \operatorname{Tr}\left(A L_{V}^{\dagger} A^{T}\right)$
Problem: assumption $\sum_{i} \log w_{i}=0$ not necessarily "fair"/ relevant

Invariance under addition of constant
$\rightarrow$ need to analyze distance between equivalence classes


Invariance under addition of constant
$\rightarrow$ need to analyze distance between equivalence classes


Invariance under addition of constant
$\rightarrow$ need to analyze distance between equivalence classes


## Other performance Criteria: Summary

- Quadratic E \| $A \Delta \log w \|^{2}$
- Result and minimax optimality extend
- Direct approach $\frac{1}{k} \operatorname{Tr}\left(A L_{V}^{\dagger} A^{T}\right)$ valid if $A 1=0$
- Also simple expression for full rank $A$.

In particular error on $\left(\log w_{i}-\log w_{j}\right)$
$\mathrm{E}\left\|\Delta \log w_{i}-\Delta \log w_{j}\right\|^{2}=\frac{1}{\mathrm{k}} \operatorname{Tr}\left(\left(\mathrm{e}_{\mathrm{i}}-\mathrm{e}_{\mathrm{j}}\right)^{T} L_{V}^{\dagger}\left(\mathrm{e}_{\mathrm{i}}-\mathrm{e}_{\mathrm{j}}\right)\right)=\Omega_{V, i j}$

- Nonlinear criteria: ex: $\sin (w, \widehat{w})$
- Also extends under assumptions
- Based on $\|\nabla V \Delta \log w\|^{2}$

Ranking from pairwise comparisons

- Motivation and Problem
- Weighted Least-Square Estimator
- Algorithm and Complexity
- Error Analysis
- Error Bound
- Lower Bound - Minimax Optimality
- Other criteria
- Experimental Results
- A Surprising Observation
- Generalizations
- Conclusions


## 3D grid

## 125 nodes

$w_{i}$ i.i.d. geometric distribution in [1, 20]


# Erdos-Renyi 

## 100 nodes, avg degree 10

$w_{i}$ i.i.d. geometric distribution in [1, 20]


# Erdos-Renyi <br> 100 nodes, avg degree 10 <br> $w_{i}$ i.i.d. geometric distribution in [1, 20] 



## Only Marginal improvement

$\sin (\widehat{w}, \downarrow \quad$ Did we miss something?

- Is our algorithm better?

Or just more amenable to analysis?


## Worst-case $\neq$ Typical case for a distribution

- Eigenvector method [Negahban 16] does indeed appear to perform better than its bound.
- But, $\simeq$ as weighted least-square method with weights

$$
\left(\frac{1}{\frac{1}{w_{i}}+\frac{1}{w_{j}}}\right)^{2} \quad \text { Vs our }
$$

Grows with $\sqrt{w_{i} w_{j}}$

$$
\frac{1}{\frac{w_{i}}{w_{j}}+2+\frac{w_{j}}{w_{i}}}
$$

Only depends on ratio $w_{i} / w_{j}$
$\rightarrow$ Neglects information combing from edges between "small weights"

But effect can be averaged out when weights i.i.d. randomly selected

## On a specific graph

(50 nodes $u_{i}$ )


Weights selected so that relevant information between small values ${ }^{56}$

## Conclusion on simulations

- Outperforms previously existing methods
- Effect marginal on "randomized case"
- Significantly more accurate
- For local differences
- When information comes from edges between small $w_{i}$

Ranking from pairwise comparisons

- Motivation and Problem
- Weighted Least-Square Estimator
- Algorithm and Complexity
- Error Analysis
- Error Bound
- Lower Bound - Minimax Optimality
- Other criteria
- Experimental Results
- A Surprising Observation
- Generalizations
- Conclusions


# Impact of variance approximation 

Idealized algorithm uses $\quad v_{i j}:=\frac{w_{i}}{w_{j}}+2+\frac{w_{j}}{w_{i}}$
Not available $\rightarrow$ approximated by empirical

$$
\hat{v}_{i j}:=R_{i j}+2+R_{i j}^{-1}
$$

Theoretical analysis: empirical approx. shown "not to degrade solution too much"
But Experimentally: Empirical variance outperforms real one


Algorithm with real variance (only available on synthetic data)

## Implicit "regularization"

$\mathrm{k}=10: w_{1}=8, w_{2}=2$

| Prob. | $\log R_{i j}$ | $\hat{v}_{12}$ | Weight in <br> least square |  |
| :--- | :---: | :---: | :---: | :---: |
| 8 wins <br> (expected) | $30 \%$ | $\log \frac{8}{2} \simeq 1.38$ | $\frac{8}{2}+2+\frac{2}{8}=6.25$ | 0.16 |
| 7 wins | $20 \%$ | $\log \frac{7}{3} \simeq 0.85$ <br> $-38 \%$ | $\frac{7}{3}+2+\frac{3}{7}=4.76$ | 0.21 |
| 9 wins | $26 \%$ | $\log \frac{9}{1} \simeq 2.19$ <br> $+58 \%$ | $\frac{9}{1}+2+\frac{1}{9}=11.11$ | 0.09 |
|  |  |  |  |  |

Empirical variance appear to "smoothen outs" dangerous outlyers.

# Experimental validation <br> 3 node graphs, $W_{I}=1, W_{J}=3 \rightarrow 25$ wins expected Edges towards $W_{K}$ set artificially at expected value 




Figure 5.8: $\epsilon\left(F_{I J}\right) * P\left(F_{I J}\right)$ for $F_{I J} \in[10,40]$

Winand, M., \& Hendrickx, J. (2021). Learning from pairwise comparisons: an empirical analysis. Ecole polytechnique de Louvain, Université catholique de Louvain.

## Experimental validation

3 node graphs, $W_{I}=1, W_{J}=3 \rightarrow 25$ wins expected Edges towards $W_{K}$ set artificially at expected value

Impact of \# wins + probability


Contribution to error


Appears to confirm implicit regularization idea
But: result of "favorable" trade-off between opposite (important) effects

Open question

- Rigorous understanding
- Further exploitation of idea or phenomenon

Figure 5.8: $\epsilon\left(F_{I J}\right) * P\left(F_{I J}\right)$ for $F_{I J} \in[10,40]$
Winand, M., \& Hendrickx, J. (2021). Learning from pairwise comparisons: an empirical apalysis. Ecole polytechnique de Louvain, Université catholique de Louvain.

Ranking from pairwise comparisons

- Motivation and Problem
- Weighted Least-Square Estimator
- Algorithm and Complexity
- Error Analysis
- Error Bound
- Lower Bound - Minimax Optimality
- Other criteria
- Experimental Results
- A Surprising Observation
- Generalizations
- Conclusions


## Relaxing Assumptions

- Same number $k$ of comparisons on every edge
- Can be relaxed,
- Some technical aspects
- Ratio min/max \# comparison for some results
- i.i.d. comparisons
- Bounded dependence between comparison (most likely) OK
- Persistent dependence between edges $\rightarrow$ adapting variance


## Extending the notion of comparison

- Pick best out of three
- Rank three
- Comparison with ties...
- Many extensions possible (only approximative analysis so far) but depends on model specifics

Branders, M., Vekemans, A., \& Hendrickx, J. Recovering weights from comparison results in extensions of BTL model

- Multi-comparisons: sometimes non-diagonal Variance Matrix (expression of least square in terms of non-independent events)
- Game : find relation of the type

$$
w_{i}^{q_{i}} w_{j}^{q_{j}} w_{k}^{q_{k}} \simeq \text { some function of the outcome (for large } \mathrm{k} \text { ) }
$$

## Other models - criteria

Bradley-Terry-Luce

$$
p_{i j}=\frac{w_{i}}{w_{i}+w_{j}} \quad \text { Other models? }
$$

- Results extend to large class of ordinal models:

$$
p_{i j}=f\left(\phi\left(\beta_{i}\right)-\phi\left(\beta_{j}\right)\right)
$$

BTL:

- $\phi=\log$
- $f(z)=\frac{1}{1+e^{z}}$
- Technical assumption needed (e.g. $f$ log-concave)
- Not $100 \%$ clear yet which ones are actually necessary
- Extension to (asymptotically) any continuous quality criterion

Conclusions

- Quality of items recovered from results of comparisions on netork $\rightarrow$ ranking
- Near-linear time algorithm.
- Linear least-square, coefficients nonlinear in data.
- No hyperparameters, tuning etc.
- Outperforms past methods, Minimax optimal
- Performances Driven by $L_{V}^{\dagger}$ and Resistance of comparison graph
- Many possible generalizations
- Implicit regularization, not fully understood


# Some further research directions 

- Online version
- Comparison arriving one by one
- Choosing Comparison based on past data
- Explore and Exploit
- Regime of small \# comparisons (large n)
- Prior Incorporation?
- Exploitation of implicit regularization


## Thank you for your attention



Alex Olshevsky (BU), Venkatesh Saligrama (BU)

Maxime Winand Marine Branders Astrid Vekemans

+ Open position to be filled ASAP
julien.hendrickx@uclouvain.be


## References

- Hendrickx, J., Olshevsky, A., \& Saligrama, V.. Minimax rate for learning from pairwise comparisons in the BTL model. ICML 2020
- Hendrickx, J., Olshevsky, A., \& Saligrama, V. Graph resistance and learning from pairwise comparisons. ICML 2019
- Daroczy B., Hendrickx, J., Olshevsky, A., \& Saligrama, V. Minimax rate for learning ordinal models from pairwise comparisons, coming soon
- Branders, M., Vekemans, A., \& Hendrickx, J. Recovering weights from comparison results in extensions of BTL model, Ms Thesis EPL UCLouvain 2022
- Winand, M., \& Hendrickx, J. Learning from pairwise comparisons: an empirical analysis. MS Thesis EPL UCLouvain 2021

