Ranking from pairwise comparisons: a near-linear time minimax
optimal algorithm for learning BTL weights

Julien Hendrickx (UCLouvain)

We consider the problem of ranking and learning the qualities wy,...,w, of a collection of
items by performing noisy comparisons among them. We assume that there is a fixed “comparison
graph”, and every neighboring pair of items is compared k times.

We focus more specifically on the popular Bradley-Terry-Luce model, where comparisons are
i.i.d. events, and the probability for item ¢ to win the comparison against j is w;/(w; + wj).

We propose a near-linear time algorithm allowing us to recover the weights with an accuracy
that outperforms all existing algorithms, and show that this accuracy is actually within a constant
factor of information-theoretic lower bounds, that we also develop. This accuracy is related to the
average resistance of the comparison graph.

Our algorithm is based on a weighted least square, with weights determined from empirical
outcomes of the comparisons.

We further discuss the extension to other models of comparisons, and comparisons involving
multiple items.
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What if Ligue 1 has to stop now?

Who is champion? What is the ranking?
- who goes to L2, to European league etc.

Possible solution: use current standing

pts J. G. N. P p. c. +/-

Paris-SG 63 26 20 3 3 66 25 +41
2 Marseille 55 26 17 & 5 49 25 +24
3 Monaco 51 26 15 6 5 55 36 +19

Lens 51 26 14 9 3 40 21 +19
5 Rennes 46 26 14 4 B 45 29 +16
6 Lille 45 26 13 6 7 46 33 +13
7 Nice 42 26 11 9 6 34 22 +12
& Reims 40 26 9 13 4 34 26 +8 ¢
9 Lorient 40 26 11 7 8 38 36 +2
10 Lyon 39 26 11 6 9 39 28 +11
11 Clermon t 34 26 9 7 10 26 34 -8

12 Toulouse 3226 9 5 12 41 46 -5



What if Ligue 1 has to stop now?

Who is champion?

What is the ranking?
- who goes to L2, to European league etc.

Possible solution: use current standing

1 Paris-SG

2 Marseille

pts J. G. N. P p. c

63 26 20 3 3 66 25

55 26 17 4 5 49 25

+/-

+41 @

+24

3 Monaco 51 26 15 6 5 55 36 +19 [ ]
4 Lens 51 26 14 9 3 40 21 +19 (X}
5 Rennes 46 26 14 4 B 45 29 +16

6 Lille 45 26 13 6 7 46 33 +13 @ [
7  Nice 42 26 11 9 6 34 22 +12 X
& Reims A 40 26 9 13 4 34 26 +8

7 Lorient 40 26 11 7 8 38 36 +2 ®
10 Lyon 39 26 11 6 9 39 28 +11 [ )
11 Clermont A 3426 9 7 10 26 34 -8 (]
12 Toulouse 3226 9 5 12 41 46 -5

Nice and Reims similar
But 2 weeks ago

STADE DE REIMS @ -n @ TOULOUSE FC

good

MONACO i n- w OGC NICE

Much stronger achievement

- Nice should get more recognition
- “Current standing” option unfair for
teams who only played stronger teams



What if Ligue 1 has to stop now?

Who is champion? What is the ranking?
- who goes to L2, to European league etc.

- Nice should get more recognition
- “Current standing” option unfair for teams who only played
stronger teams

Inherent problem when games are not all-to-all

- Tennis ranking
- Chess

- (..)

- How to build ranking / # points from results of “arbitrary” comparisons



How to evaluate pain-killer efficiency

Asking patients number between 1 and 10 ?

- Good but not very objective + patient dependent
- Can’t test all on all patient
- Preference for giving “good ones”

Practical data collection: try 2 and ask which is best
+ learn quality 5



Online review
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Alternative: did you prefer this place or this place



Comparison can be all you have

Buy Buy
product 1 product 2

Preference expressed by action

Multiple items, not everyone compares all

How to rank / recover value based on (non-exhaustive) comparisons?

7



Bradley-Terry-Luce mode

* Items have intrinsic quality (weight): w; W
pl] B Wi + W]

* When comparingi-j, i wins with probability

Example _ .
pick coffee with 80%

probability, tea with 20%

XXX football team: 3 YYY football team: 2

- XXX should win with probability 60%

|dea: recover weights w; from the comparison results
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Weight recovery

ltems 1, ..., n with quality (weights) w4, ..., w,, € [1, b]

Comparison graph

1 7 k i.i.d. comparisons for each edge
[ wins comparison against j with probability
s b= Wi
H Wi + W]
4
@ 5

Problem: Recover vectors of weights w = (wy, ..., w,)" from results,
up to constant multiplicative factor. Range b exists but is not known

Sufficient statistics: k and ratio of wins R;j = #wins i

# wins j 11



Data has network structure

Sufficient statistics: k and ratio of wins

Hwins i

Rij -

# wins |

Goal = recover values at nodes

12



Previous solutions

* Maximum Likelihood
* Convex optimization problem after reformulation
* Asymptotically optimal, but only asymptotic guarantees

* Rank centrality [Negahban, Oh, Shah 2016]

* Based on convergence of Markov Chain built from data

2

A

w
H Twlls 2 o 1\ b°logn dmax 1 — p spectral gap of random walk
Tk - k (1 —p)? d?nin ’ Aimax, Amin 1argest, smallest degree
H wll1 ] b maximal weight

Could scale as n7b5/k Several improvements



Algorithm idea: Least-Square

l
Wl'+Wj

Probability i wins over j:

For large number k of comparisonsi-j:

#Winizkpifzkw::;;j — R = #win i Wi
#winj=kp;; = kw::jw,- # win j W;

&= logw; — logw; = logR;;

(Naive) Idea 1: Least-square solution of

lOg Wi — logW] = logRU V(l,]) eEE

14



Issue 1: zero wins

Lease square solution of

log w; —logw; = logR;;

V(i,j) EE

What if i wins no comparison ? (or all)

Rij =0= logRU = —00

- Complete Failure, with positive probability

Solution: Replace 0 victory by % victory

- Simple

- provides boundedness properties
- But creates technical complications

ij —

# wins i

# wins |

15



Issue 2: Non-uniform Variance

Lease square

solution of log w; — logw; = log R;; (i, ))
5vs5 9vs 1
Variance # win i i ﬁ k
Vi; 4 11.11
“Variance” . 4 11.11
Variance” log R;; vy x - orer
Tk k k

Withvij =%‘|‘2‘|‘m
J

Wi

Error in equation (9,1) expected to be larger than for (5,5)

- Corresponding equations should be treated differently.



Solution: Weighted least square
log w; —logw; = logR;;
Vi vy

Idea: each equation should have “the same variance” v, = Yiio4
(inspired by Best Linear Unbiased Estimator idea) Wi Wi

Least square solution of

- Ideal Estimator

logw = arg min Z
Z
(L)EE

(Zi — Zj — lOgRl]) 2

vij

17



Weighted least square

- Ideal Estimator

(Zi - Zj — logRU) 2
logw = arg min Z
Z v. .
(L)EE Y

Issue 3: Vij :=@+ 2 + Depends on the values we want to recover

Initiate ;; = 4 for all edges
Repeat
Compute estimate w with ¥;;
update ¥;; based on w

Iterative solution:

Empirical solution:

R~ > vj=—+2+—=R;+2+R;
L] W] W] Wi

18



Weighted least square

- Ideal Estimator

. . (z; — zj —logR;j) *
logw = arg min Z
(L)EE Y

Issue 3: Vij :=@+ 2 + Depends on the values we want to recover
i AP

Pa

Iterative solution:

R

M

- Computationally cheaper
- Simpler to analyze
- More accurate (surprisingly)

@pirica/ solution:‘<

p. i > vj=—+2+—=R;+2+R;
]

19



Would be 0 with “nominal”

Flﬂal EStlmatOr ral;o‘wl-/wj and real weights

. . (z; — z; —logR;;) *
logw = arg min E =
Z D. -
(i.,j)€E N

With A_ . e L. —1 1ri “« H ”
Vi = Rl] + 2+ Rij Empirical “variance

Rij = #winsi /#winsj

- W computed by solving linear least-square problem
- But nonlinear dependence on data and R;;

- No hyper parameter, tuning etc. (can be introduced)
- Can be computed in near linear time

Accuracy € in O (|E| log€ nlog 16)

20
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Reminder Incidence matrix B

Relates nodes to edges

Column: edge o L, =—1
& If edge e fromitoj te
Row: nodes Bie =1
Orientation arbitrary
a b ¢
1 /1 1 1
2 1 1 1
3 1 -1 [1
4 11-1 11
5 -1 (-1

22



Compact reformulation with B

Relates nodes to edges

Column: edge L {Bie = -1

Row: nodes If edge e fromito | B, =1
Orientation arbitrary

> System z; — zj = logR;; forall (i,j) € E

Can be rewritten compactly

- One equation / edge
- One variable / node

BTz = log R
With R € RIEl vector of R;;

23



Compact reformulation with B

Relates nodes to edges

Column: edge L {Bie = -1
Row: nodes If edge e fromito | B, =1
Orientation arbitrary
> System z; — zj = logR;; forall (i,j) € E
o

Can be rewritten compactly

V-1Y2BTz =V~1/?]ogR

With R € RIEl vector of R;;
V= dlag ( ...,Ul'j, )

V;; approximated from data



Least-Square

Estimator: log w least square solution of

V-1/2BTz = V-12logR
Normal equations = solution of

1 1
(V 2By -1Y2BTz = (W 2BT)TV =12 ]ogR

25



Least-Square

Estimator: log w least square solution of

V-1/2BTz = V=1/21ogR
Normal equations = solution of

1 1
(V 2By -1Y2BTz = (W 2BT)TV =12 ]ogR

/ = BV 1logR

(weighted) Laplacian matrix

26



Reminder: Laplacian Matrix

Represents Lij = —1if edge (i, )
- relations between nodes L;; = degree(i)
l

- degrees

1
2 113 |-1 1
3
3 11/-1 13 1
4 4 1 2 |-
([ 5
5 1/-1-113

27



Reminder: Laplacian Matrix

Represents Lij = —1if edge (i, )
- relations between nodes L;; = degree(i)
l

- degrees

Interesting properties

* L =BBT —\
« L1 =0 (sumline=0) o A e B
* Positive semi-definite 2 L& | 1
« A, > 0if graph connected 3 1/-1]3 1
+ “algebraic connectivity” 4 1 2 |1
5 1(-11]-1]3

28



Reminder: Weighted Laplacian Matrix
Lij = —A;jif edge (i, )

L;; = strength(i) = ZAU

J#i

Weights A;; = Aj; on edges
Represents

- Weights of relations between nodes
- Degrees/strengths of nodes

Interesting properties

L = Bdiag (A;;)BT diag (4;;) € RIEFIE
L1 = 0 (sum line = 0)

Positive semi-definite

A, > 0 if graph connected

+ “algebraic connectivity”

29



Final algorithm: Laplacian System

z = BV 'logR

=: Ly (weighted) Laplacian matrix

log W = solutions of Lyz =BV llogR

# . . V: diag(---)v"l'")
R € RIEl vector of R;; s | .

” H ” .o . .
# wins | variance” empirically estimated

Laplacian Ly, is symmetric and diagonally dominant (Ly ;; = — ;4 Ly i;)

[Spielman, Teng 2014], system solved up to accuracy € in O (IEI log® nlog 16)
—> Near linear time in size |E| of data.

For reasonable size systems, easier to use classical solver 30
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Error analysis

Disclaimer: Intuitive heuristic analysis

Formal proofs

- Exist

- Were guided by this analysis

- Involve many technical difficulties
- Probably not for a presentation.

In particular we assume
- ElogRU =10gpl] . pij = —
- Variance logRl-j — f

- Exact v;jused in the algorithm

(all this is “asympotically” true)



Error analysis
log W = solutions of ~ Lyz = BV "logR

How accurate is this estimate? -> characterize Alogw = logw — logw

Scale Problem :
- w, W only defined up to multiplicative constant pij =
- logw,log w defined up to additive constant

—> Arbitrary choice: logw ,logw sum to 0, i.e. orthogonal to 1

~ 17 -1 With le Monroe Penrose Pseudo-inverse
2 logw = LyBV log R (kernel and image orthogonal to 1)

10g w = LT/BV_1 logp pij = Wi trye ratio

Wj



logw = LY BV 1logR
EW T BT R s Alogw = LY BV-1AlogR

logw = LT BV tlogp

T
E Alogw Alogw” =E (LY BV=1Alog R)(L}BV~—1AlogR)
=EL,BV-'AlogR Alog R V-'BTL},
= L, BV=1(EAlog R Alog RDV1BTL},

34



logw = LY BV 1logR
EW T BT R s Alogw = LY BV-1AlogR

logw = LT BV tlogp

T
E Alogw Alogw” =E (LY BV=1Alog R)(L}BV~—1AlogR)
=EL,BV-'AlogR Alog R V-'BTL},
= L, BV=1(EAlog R Alog RDV1BTL},

Square “co-variance” matrix, |E|X|E|
- Diagonal because edges independent and we assume E AlogR;; = 0
- for edge (i, /) value v;; /k

> EAlogR AlogRT = %V

35



logw = L,BV~1logR
ST v 5% 5 Alogw = LtBV-1AlogR
logw = LT BV tlogp

T
E Alogw Alogw” =E (LY BV=1Alog R)(L}BV~—1AlogR)
=EL,BV-'AlogR Alog R V-'BTL},
= L, BV=1(EAlog R Alog RDV1BTL},
_1yt py-1yy-1pTt
_ELVBV VV-1BTLY
_ 141 —1pTyT

R

by property of Monroe-Penrose inverse

36
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Reminder: Graph resistance

Weights A;; = Aj; represent

conductance of wires $ % M
. I

.Q.14_ — V/I

Effective Resistance ();; =V [ current if V volts betweeniand j

Average resistance: Average over all pairs

Q _ lT LT _ l 1 With le Monroe Penrose Pseudo-inverse
av — T ( A) =
n £ 0; (La)
i

Alternative measure of connectivity — less centered on “worst-case”
38
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* Accuracy determined by average resistance

bn? b>n” . .
0 (T) vs O ( - ) (But criteria not strictly comparable)

40



Bound comparison

Graph Negahban 16 Our result
Line b>/2n? b\/n
Circle b>/2n? b\/n
2D grid b®/%n b
3D grid b2/ 2n2/3 b
Star graph b®/2\/n b
2 stars joined at centers | b%/%n!-® b
Barbell graph b®/2n3-5 by\/n
Geo. random graph b°/2n b
Erdos-Renyi bo/2 b

Factor 1/k omitted
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Lower bound

1 . . . :
EL;r, = Fisher information matrix,

But, many relevant estimates biased > Cramer-Rao not directly applicable

Nevertheless:

Theorem: For any nominal weights w and any comparison graph,

There is a way of generating w, randomly in a ball of radius 0,, ¢ (i)

vk
(with 2;(w,); = X w;)
such that for any estimator w using the outcome Y of k comparisons

E Il logw(Y) — logw, II*= Q( )Tr(L )

—> For large enough # comparisons, simple least square algorithm
is minimax optimal (up to constant factor)



Proof technique

1) Generate w, by combining i.i.d. variations along eigenvectors of Ly,

2) Exploit Lemma 6.1. Let i be any joint probability distribution of
a random pair (w,w'"), such that the marginal distributions
of both w and w' are equal to 7. Then

Ery[d(w, d(Y)]] > By |d(w, w')(1 =[Py — PullTy]

where || - ||y represents the total-variation distance be-
tween distributions and Y the observations.

(see e.g. [Hajek & Raginsky, 2019])

: ) : 1
3) Use Pinsker’s inequality  |P2* - PEF|l3y < §DKL(P§]“HP{U®'“)

+ exploit decomposition properties of KL-divergence



Ranking from pairwise comparisons

* Motivation and Problem
* Weighted Least-Square Estimator
* Algorithm and Complexity

* Error Analysis
* Error Bound
* Lower Bound — Minimax Optimality
* Other criteria

* Experimental Results

* A Surprising Observation
* Generalizations

* Conclusions



Other performance criteria?
How about E || AAlogw |2

Ex: Alogw; — Alogw; = error on (logw; — logw;)

. Wi
~ relative error on of;
J

Direct (naive) approach:

1
E A logw A logw” ZEL}L,

2_ T 2T ~1 T AT
E |l AAlogw || —TT'(AEA logw A logw' A )— kTr(ALVA )

Problem: assumption };; log w; = 0 not necessarily “fair”/ relevant



Invariance under addition of constant
- need to analyze distance between equivalence classes

4

A

log w,

logw

logw

v

logw,

47



Invariance under addition of constant
- need to analyze distance between equivalence classes

z1+2, =0

Elements
used in our

4

A

log w,

logw

logw

analysis T

/

v

logw,

48



Invariance under addition of constant
—> need to analyze distance between equivalence classes

4

A

log w,
Z1 + Zy = 0 logW
Elements
used in our m logw
analysis T [\ R
log w,
Not necessarily best

to compute distance
I Az |I%

49



Other performance Criteria: Summary

* QuadraticE || AAlogw ||?

- Result and minimax optimality extend
- Direct approach %Tr(ALJ{,AT) valid if A1 = 0
- Also simple expression for full rank A.

In particular error on (logw; — logw;)

1 T
Ell Alogw; —Alogw; 2= ETT ((ei - ej) LT,(ei - ej)) = Qy i

Resistance between i and j
* Nonlinear criteria: ex: sin(w, w)

- Also extends under assumptions
-Based on || VVAlogw ||? 50
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3 D grld 125 nodes

w; i.i.d. geometric distribution in [1, 20]

3D Grid

0.35 T T T T T

—0—Ls

—&— artif weight

iter weight
—&— emp weight
03 —4— eigenv B

025 |

sin(v’D, W) 22

0.1

0.05 | | | | |
0 50 100 150 200 250 300




Erdos-Renyi

0.2

0.18

0.16

0.14
sin(iw,w) 2
0.1

0.08

0.06

0.04

100 nodes, avg degree 10

Eraos-Henyi
T

w; i.i.d. geometric distribution in [1, 20]

T
—&O—LS
—&— artif weight
iter weight | _|
—<&— emp weight
—<&— eigenv
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E rd OS- Re ﬂyl 100 nodes, avg degree 10

w; i.i.d. geometric distribution in [1, 20]

Eraos-Henyi
0.2 T T T

T
——LS
—&— artif weight
0.18 |- iter weight | _|
(}\ —<&— emp weight
' eigeny,

Only Marginal improvement

sin(w, ¥ * Did we miss something?
* |sour algorithm better?
Or just more amenable to analysis?

0.06 -

0.04 | | | | |




Worst-case # Typical case for a distribution

* Eigenvector method [Negahban 16] does indeed appear to
perform better than its bound.

* But, =~ as weighted least-square method with weights

2

1 1
1 1 Vs our wi ﬁ
Wi + W] W, + 2+ W,
Grows with \/w;w; Only depends on ratio w; /w;

- Neglects information combing from edges between “small weights”

But effect can be averaged out when weights i.i.d. randomly selected



On a specific graph

(50 nodes u;)

emp weight |

Error on | N

|W3_W5|10'1* M
| -

C 1 1 1 1 1 1
0 2000 4000 6000 8000 10000 12000 14000
k

Weights selected so that relevant information between small values ~°



Conclusion on simulations

e Qutperforms previously existing methods
* Effect marginal on “randomized case”

e Significantly more accurate
* For local differences
* When information comes from edges between small w;
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Impact of variance approximation

— Wi Wj
Idealized algorithm uses  Vij = W_; +2+ W

A — -1
Not available = approximated by empirical ~ Vij = Rij + 2 + Ry

Theoretical analysis: empirical approx. shown “not to degrade solution too much”

But Experimentally: Empirical variance outperforms real one

b=5,n=100and p =0.2

ol . Algorithm using empirical approximation
16 F /

0.14 1 \

Sine error

Algorithm with real variance
(only available on synthetic data)

10 20 30 40 50 60 70 80 90 100
Number of comparisons k 59



Implicit “regularization”

k=10: Wi, = 8, Wy = 2

Weight in
Prob. log R;; V12 least square
8 wins 8 S 2422625 0.6
) log— ~1.38 5 5 — O .
(expected) 30% 2 2 8
7 wins 20% | Z~085 Zy2+3=476 0.21
0 og3 ~ (). 3 . . .
-38% +30%
9 wins 26% log2 ~2.19 >+2+-=1111 0.09
1 1 9
+ 58% - 43%

Empirical variance appear to “smoothen outs” dangerous outlyers.
60



Sine error

Experimental validation

3 node graphs, W; = 1,W; = 3 - 25 wins expected
Edges towards Wy set artificially at expected value

Impact of # wins + probability Contribution to error
<103 k=100,w, =1andw =3
k =100, w|=1ande=3 2.5 T T T
0.9 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 01 Artificial method
Avrtificial method Empirical method
0.8r Empirical method | | 009 oL
—~, 151
w
e
£
Um 1
0.5
0 ‘ ‘ ‘ ‘
0 g L L N . . . . . 0 10 15 20 25 30 35 40
0 10 20 30 40 50 60 70 80 90 100 Number of wins out of 100 comparisons FIJ

Number of wins out of 100 comparisons FI J

Figure 5.8: E(FIJ) * P(F]J) for Fr; € [10,40]

Winand, M., & Hendrickx, J. (2021). Learning from pairwise comparisons: an empirical @tjalysis.
Ecole polytechnique de Louvain, Université catholique de Louvain.



Sine error
o

Experimental validation

3 node graphs, W; = 1,W; = 3 - 25 wins expected
Edges towards Wy set artificially at expected value

Impact of # wins + probability Contribution to error

103 k=100,w, =1andw =3
k=100, w =1andw =3 25 ¢ ; ; ;

0.9 T T T T T T T T T 0.1

Artificial method
Empirical method

Artificial method
Empirical method

0.8 710.09

ol N\

"| Appears to confirm implicit regularization idea
But: result of “favorable” trade-off between opposite (important) effects

o

o

©

Open question
- Rigorous understanding
- Further exploitation of idea or phenomenon

e

ot

0 10 20 30 40 50 60 70 80 90 100 Number of wins out of 100 comparisons FIJ
Number of wins out of 100 comparisons FI J

Figure 5.8: E(F]J) * P(F]J) for Fr; € [10,40]

Winand, M., & Hendrickx, J. (2021). Learning from pairwise comparisons: an empirical %Qalysis.
Ecole polytechnique de Louvain, Université catholique de Louvain.
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Relaxing Assumptions

* Same number k of comparisons on every edge

- Can be relaxed,
- Some technical aspects
- Ratio min/max # comparison for some results

* i.i.d. comparisons

- Bounded dependence between comparison (most likely) OK
- Persistent dependence between edges = adapting variance



Extending the notion of comparison

* Pick best out of three
e Rank three
 Comparison with ties...

- Many extensions possible (only approximative analysis so far)
but depends on model specifics

Branders, M., Vekemans, A., & Hendrickx, J. Recovering weights
from comparison results in extensions of BTL model

- Multi-comparisons: sometimes non-diagonal Variance Matrix
(expression of least square in terms of non-independent events)

- Game : find relation of the type

qiwflng" ~ some function of the outcome (for large k)

Wi i



Other models - criteria

Bradley-Terry-Luce oW
y-lerry Py = W, Other models?

Results extend to large class of ordinal models:

BTL:

pii = f(@B) — d(B))) ¢

log

f(z) =

1
1+eZ4

Technical assumption needed (e.g. f log-concave)
Not 100% clear yet which ones are actually necessary

Extension to (asymptotically) any continuous quality criterion




Conclusions

Quality of items recovered from results of
comparisions on netork = ranking

Near-linear time algorithm.
Linear least-square, coefficients nonlinear in data.
No hyperparameters, tuning etc.

Outperforms past methods, Minimax optimal

Performances Driven by LJ{, and Resistance of
comparison graph

Many possible generalizations
Implicit regularization, not fully understood



Some further research directions

* Online version
 Comparison arriving one by one
e Choosing Comparison based on past data
* Explore and Exploit

* Regime of small # comparisons (large n)
* Prior Incorporation?
* Exploitation of implicit regularization



Thank you for your attention

Alex Olshevsky (BU), Venkatesh Saligrama (BU) Balint Daroczy
Maxime Winand Marine Branders Astrid Vekemans

+ Open position to be filled ASAP

julien.hendrickx@uclouvain.be
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