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We consider the problem of ranking and learning the qualities w1, . . . , wn of a collection of
items by performing noisy comparisons among them. We assume that there is a fixed “comparison
graph”, and every neighboring pair of items is compared k times.

We focus more specifically on the popular Bradley-Terry-Luce model, where comparisons are
i.i.d. events, and the probability for item i to win the comparison against j is wi/(wi + wj).

We propose a near-linear time algorithm allowing us to recover the weights with an accuracy
that outperforms all existing algorithms, and show that this accuracy is actually within a constant
factor of information-theoretic lower bounds, that we also develop. This accuracy is related to the
average resistance of the comparison graph.

Our algorithm is based on a weighted least square, with weights determined from empirical
outcomes of the comparisons.

We further discuss the extension to other models of comparisons, and comparisons involving
multiple items.
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What if Ligue 1 has to stop now?

2

Who is champion? What is the ranking? 
à who goes to L2, to European league etc.

Possible solution: use current standing



What if Ligue 1 has to stop now?

3

Who is champion? What is the ranking? 
à who goes to L2, to European league etc.

Possible solution: use current standing

But 2 weeks ago
Nice and Reims similar

good

Much stronger achievement

- Nice should get more recognition
- “Current standing” option unfair for 
teams who only played stronger teams



What if Ligue 1 has to stop now?

4

Who is champion? What is the ranking? 
à who goes to L2, to European league etc.

- Nice should get more recognition
- “Current standing” option unfair for teams who only played 
stronger teams

Inherent problem when games are not all-to-all 

- Tennis ranking
- Chess
- (…)

à How to build ranking / # points from results of “arbitrary” comparisons



How to evaluate pain-killer efficiency
Asking patients number between 1 and 10 ? 

- Good but not very objective + patient dependent
- Can’t test all on all patient
- Preference for giving “good ones”

Practical data collection: try 2 and ask which is best 
+ learn quality 5



Online review

less than 5* often an insult  

è Not very informative

Alternative: did you prefer this place or this place
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Comparison can be all you have

Preference expressed by action

Multiple items, not everyone compares all
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Buy 
product 1

Buy 
product 2

How to rank / recover value based on (non-exhaustive) comparisons?



Bradley-Terry-Luce model
• Items have intrinsic quality (weight): 𝑤!
• When comparing 𝑖 - 𝑗 ,  𝑖 wins with probability

𝑝!" =
𝑤!

𝑤! +𝑤"

Example 

4 1

pick coffee with 80%
probability, tea with 20%

Idea: recover weights 𝑤! from the comparison results

XXX football team: 3 YYY football team: 2

à XXX should win with probability 60%
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Ranking from pairwise comparisons
• Motivation and Problem
• Weighted Least-Square Estimator
• Algorithm and Complexity
• Error Analysis

• Error Bound
• Lower Bound – Minimax Optimality
• Other criteria

• Experimental Results
• A Surprising Observation
• Generalizations
• Conclusions
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Weight recovery

Comparison graph 

Items 1,… , 𝑛 with quality (weights) 𝑤#, … , 𝑤$ ∈ [1, 𝑏]

1 2

3

4
5

𝑘 i.i.d. comparisons for each edge
𝑖 wins comparison against 𝑗 with probability 

𝑝!" =
𝑤!

𝑤! +𝑤"

Problem: Recover vectors of weights 𝑤 = (𝑤#, … , 𝑤$)′ from results, 
up to constant multiplicative factor. Range 𝑏 exists but is not known
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Sufficient statistics: k and ratio of wins 𝑅!" =
# wins i

# wins j



Data has network structure

1 2

3

4
5
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Sufficient statistics: k and ratio of wins

𝑅!" =
# wins i

# wins j

𝑹𝟏𝟐

𝑹
𝟑𝟓

𝑹
𝟏𝟑 𝑹 𝟐𝟑 𝑹𝟐𝟓𝑹𝟏𝟒

𝑹𝟒𝟓

Goal = recover values at nodes



Previous solutions
• Maximum Likelihood 

• Convex optimization problem after reformulation
• Asymptotically optimal, but only asymptotic guarantees

• Rank centrality [Negahban, Oh, Shah 2016] 
• Based on convergence of Markov Chain built from data
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Minimax Rate for Learning From Pairwise Comparisons in the BTL Model

comparisons models, active comparisons, different numbers
of comparisons across each edge, simultaneous comparisons
of multiple items, etc), and we below survey a number of
works analyzing these extensions. However, surprisingly
it turns out that, despite literature on the BTL model dat-
ing back to the 1950s, many fundamental questions in this
simplest setting remain open.

In this paper, we address one of those questions, namely
understanding the rate at which the error in the recovery of
w decays with the number of comparisons per edge k in
terms of the graph G and the true weight vector w.

We will propose an algorithm for the recovery of w based
on nonlinearly scaled weighted least-squares. Our main
contribution is to show that, up to a constant factor, this
algorithm achieves the asymptotic minimax rate for this
problem, which we characterize in terms of the trace of
a certain matrix depending both on the graph G and the
weights w.

1.1. Previous work

The earliest references on the BTL model are (Bradley &
Terry, 1952; Rao & Kupper, 1967; Davidson, 1970; Beaver
& Gokhale, 1975) dating back to 1950s-1970s. These works
focused on maximum likelihood estimation and hypothesis
testing. We mention in particular (Beaver, 1977), which
proposed doing so with a least squares approach, which
is in the same spirit as the method proposed in this paper.
The problem was first introduced in the context of inter-
net search in the now-classic paper (Dwork et al. , 2001).
Several methods for the general class of problems of rank
aggregation were proposed in (Dwork et al. , 2001), particu-
larly a method based on encoding qualities as the stationary
distribution of a Markov chain built from the outcomes of
comparisons.

An extremely large literature on analysis of pairwise compar-
isons has sprung within the statistics and machine learning
literature in the past two decade and, a a result, it is not pos-
sible to survey all the work that has been done. There are
many variations of the problem that have been studied, from
more sophisticated models such as Thurstone and Placket-
Luce (Hajek et al. , 2014; Maystre & Grossglauser, 2015),
to online or bandit versions (Szörényi et al. , 2015; Yue et al.
, 2012), to models with active learning (Jamieson & Nowak,
2011; Ailon, 2012), to models with multiple users with
potentially different preferences among items (Wu et al. ,
2015). We next focus only on papers most directly related to
our work, namely papers concerned with rates for recovery
of the true weights w in the BTL model.

The first rigorous analysis of the error rate in the pairwise
case appeared in (Negahban et al. , 2012) in the case of a
random comparison graph and in (Negahban et al. , 2016)

for an arbitrary graph. The underlying method recovered
an estimate Ŵ from the stationary distribution of a Markov
chain constructed based on the outcomes of the comparisons.
By construction, the elements of Ŵ summed to one, which
made it natural to compare Ŵ with the normalized version
of the true weights w/||w||1.

It was shown in (Negahban et al. , 2016) that, for a number
of comparisons k large enough as a function of the graph G,
assuming that the weight imbalance is bounded as

max
i,j

wi

wj
 b, (1)

then with high probability we have that
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where dmax, dmin are the largest/smallest degrees in the
comparison graph and 1�⇢ is the spectral gap of the random
walk on the comparison graph G.

To understand how this scales in terms of the number of
nodes n, we can use the results of (Landau & Odlyzko, 1981)
which show that 1/(1�⇢) for a simple random walk on any
graph will have worst-case scaling of O(n3). Thus the right-
hand side above has a worst-case scaling of O(n7 log n)/k.

To our knowledge (Negahban et al. , 2012; 2016) represent
the first understanding of how error bounds for w scale
in terms of the corresponding graph. A consequence of
those results is that a good approximation to the (scaled)
true weights w can be found using a polynomial number of
samples. Moreover, the results of (Negahban et al. , 2016)
suggest a natural open problem: to understand just how fast
the error decays for the best possible method.

The bounds of (Negahban et al. , 2016) were recently im-
proved in (Agarwal et al. , 2018), resulting in a better scal-
ing with b and replacing davg/dmin with davg/dmin, among
other improvements. Moreover, improved bounds in the
somewhat more restrictive setting when comparisons are
made over the complete graph, but with each pair of edges
sampled independently (at rates that could differ across
edges) were obtained in (Rajkumar & Agarwal, 2014).

Considerably more general models of ranking are quite com-
mon in the literature; in particular, we mention the papers
(Rajkumar & Agarwal, 2016; Shah et al. , 2016; Negahban
et al. , 2018), discussed next. In (Rajkumar & Agarwal,
2016), the class of ranking models learnable from a ran-
dom comparison graph G with average degree that scales as
log(n) was studied, and it was shown that this possible un-
der a certain “low-rank” condition on the underlying model.
In (Shah et al. , 2016) namely estimating w under a general
ranking model parametrized by a nonlinear function which

1 − 𝜌 spectral gap of random walk
𝑑!"# , 𝑑!$% largest, smallest degree
b maximal weight

Several improvementsCould scale as 𝑛#𝑏$/𝑘



Algorithm idea: Least-Square

For large number 𝑘 of comparisons i - j : 

# win i ≃ 𝑘𝑝!" = 𝑘 #!
#!$#"

# win j ≃ 𝑘𝑝"! = 𝑘 #"
#!$#"

Probability i wins over j:     %&
%&&%'

𝑅!" =
# win i

# win j
≃
𝑤!
𝑤"

log𝑤! − log𝑤" ≃ log𝑅!"

(Naïve) Idea 1: Least-square solution of 

log 6𝑤! − log 6𝑤" = log𝑅!" ∀ 𝑖, 𝑗 ∈ 𝐸
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Issue 1: zero wins

What if 𝒊 wins no comparison ? (or all)

𝑅!" = 0 ⇒ log𝑅!" = −∞

à Complete Failure, with positive probability
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𝑅!" =
# wins i

# wins j
log 6𝑤! − log 6𝑤" = log𝑅!" ∀ 𝑖, 𝑗 ∈ 𝐸

Lease square solution of

Solution: Replace 0 victory by ½ victory

- Simple
- provides boundedness properties
- But creates technical complications



Issue 2: Non-uniform Variance

16

Variance # win i

“Variance” log 𝑅!"

5 vs 5 9 vs 1

𝑘
4

4
𝑘

𝑘
11.11

11.11
𝑘

Error in  equation (9,1) expected to be larger than for (5,5)

à Corresponding equations should be treated differently.

log 6𝑤! − log 6𝑤" = log𝑅!" ∀ 𝑖, 𝑗 ∈ 𝐸Lease square 
solution of

With 𝑣$( ≔
)!
)"
+ 2 + )"

)!

𝑘
𝑣!"

≃
𝑣!"
𝑘

≃ 3×larger



Solution: Weighted least square
log 6𝑤! − log 6𝑤" = log𝑅!"Least square solution of 

𝑣!" 𝑣!"

𝑣$( ≔
𝑤$
𝑤(
+ 2 +

𝑤(
𝑤$

à Ideal Estimator

Idea: each equation should have ”the same variance”
(inspired by Best Linear Unbiased Estimator idea)

log 6𝑤 = argmin
%

B
!," ∈(

(𝑧! − 𝑧" − log𝑅!") )

𝑣!"
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Weighted least square

𝑣$( ≔
𝑤$
𝑤(
+ 2 +

𝑤(
𝑤$

Empirical solution:

Issue 3: Depends on the values we want to recover

Iterative solution: Initiate 4𝑣$( = 4 for all edges
Repeat

Compute estimate 7𝑤 with 4𝑣$(
update 4𝑣$( based on 7𝑤

𝑣!" ≔
𝑤!
𝑤"
+ 2 +

𝑤"
𝑤!
≃ 𝑅!" + 2 + 𝑅!"'(𝑅!" ≃

𝑤!
𝑤"

à
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à Ideal Estimator

log 6𝑤 = argmin
%

B
!," ∈(

(𝑧! − 𝑧" − log𝑅!") )

𝑣!"



Weighted least square

𝑣$( ≔
𝑤$
𝑤(
+ 2 +

𝑤(
𝑤$

Empirical solution:

Issue 3: Depends on the values we want to recover

Iterative solution:

𝑣!" ≔
𝑤!
𝑤"
+ 2 +

𝑤"
𝑤!
≃ 𝑅!" + 2 + 𝑅!"'(𝑅!" ≃

𝑤!
𝑤"

à
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à Ideal Estimator

log 6𝑤 = argmin
%

B
!," ∈(

(𝑧! − 𝑧" − log𝑅!") )

𝑣!"

Initiate 4𝑣$( = 4 for all edges
Repeat

Compute estimate 7𝑤 with 4𝑣$(
update 4𝑣$( based on 7𝑤

- Computationally cheaper
- Simpler to analyze
- More accurate (surprisingly)



Final Estimator
log 7𝑤 = argmin

)
=
!," ∈,

(𝑧! − 𝑧" − log𝑅!") -

A𝑣!"

With A𝑣!" ≔ 𝑅!" + 2 + 𝑅!"'(

- 7𝑤 computed by solving linear least-square problem
- But nonlinear dependence on data and 𝑅!"
- No hyper parameter, tuning etc. (can be introduced)
- Can be computed in near linear time

Accuracy 𝜖 in 𝑂 𝐸 log. 𝑛 log (
/ 20

Empirical “variance”

𝑅!" = # wins i # wins j

Would be 0 with “nominal” 
ratio 𝑤$/𝑤( and real weights 



Ranking from pairwise comparisons
• Motivation and Problem
• Weighted Least-Square Estimator
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• Lower Bound – Minimax Optimality
• Other criteria
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• A Surprising Observation
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Reminder Incidence matrix B

1 1 1

-1 1 1

-1 -1 1

-1 -1 1

-1 -1

a b c …

1

2

3

4

5

1 2

3

4
5

a

b
c

d
e

f

g

Column: edge
Row: nodes

Orientation arbitrary

22

𝐵!0 = −1
𝐵"0 = 1If edge e from i to j

Relates nodes to edges 



Compact reformulation with B

Column: edge
Row: nodes

Orientation arbitrary
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𝐵!0 = −1
𝐵"0 = 1If edge e from i to j

Relates nodes to edges 

𝑧! − 𝑧" = log𝑅!" for all 𝑖, 𝑗 ∈ 𝐸

𝑉9:/;𝐵<𝑧 = 𝑉9:/; log 𝑅

à System 

Can be rewritten compactly

With 𝑅 ∈ ℝ , vector of 𝑅!"

- One equation / edge
- One variable / node



Compact reformulation with B

Column: edge
Row: nodes

Orientation arbitrary

24

𝐵!0 = −1
𝐵"0 = 1If edge e from i to j

Relates nodes to edges 

𝑧! − 𝑧" = log𝑅!" for all 𝑖, 𝑗 ∈ 𝐸

𝑉9:/;𝐵<𝑧 = 𝑉9:/; log 𝑅

With 𝑅 ∈ ℝ , vector of 𝑅!"

à System 

Can be rewritten compactly

𝑣$( 𝑣$(

𝑉 = 𝑑𝑖𝑎𝑔 ( … , 𝑣!" , … )
𝑣!" approximated from data



Least-Square

Normal equations à solution of 

(𝑉*
#
)𝐵+)+𝑉*#/)𝐵+𝑧 = (𝑉*

#
)𝐵+)+𝑉*#/) log 𝑅

25

(𝑉*
#
)𝐵+)+𝑉*#/)𝐵+𝑧 = (𝑉*

#
)𝐵+)+𝑉*#/) log 𝑅

Estimator: log +𝑤 least square solution of 



Least-Square

Normal equations à solution of 

(𝑉*
#
)𝐵+)+𝑉*#/)𝐵+𝑧 = (𝑉*

#
)𝐵+)+𝑉*#/) log 𝑅

𝐵𝑉9:𝐵<𝑧 = 𝐵𝑉9: log 𝑅

(weighted) Laplacian matrix

26

(𝑉*
#
)𝐵+)+𝑉*#/)𝐵+𝑧 = (𝑉*

#
)𝐵+)+𝑉*#/) log 𝑅

Estimator: log +𝑤 least square solution of 



Reminder: Laplacian Matrix

1 2

3

4
5

𝐿!= = −1 if edge (𝑖, 𝑗)
𝐿!! = 𝑑𝑒𝑔𝑟𝑒𝑒 𝑖

3 -1 -1 -1

-1 3 -1 -1

-1 -1 3 -1

-1 2 -1

-1 -1 -1 3

1 2 3 4

1

2

3

4

5

5

27

Represents 
- relations between nodes
- degrees



Reminder: Laplacian Matrix
𝐿!= = −1 if edge (𝑖, 𝑗)
𝐿!! = 𝑑𝑒𝑔𝑟𝑒𝑒 𝑖

3 -1 -1 -1

-1 3 -1 -1

-1 -1 3 -1

-1 2 -1

-1 -1 -1 3

1 2 3 4

1

2

3

4

5

5
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Represents 
- relations between nodes
- degrees

Interesting properties

• 𝐿 = 𝐵𝐵1
• 𝐿1 = 0 (sum line = 0)
• Positive semi-definite
• 𝜆- > 0 if graph connected 

+ “algebraic connectivity”



Reminder: Weighted Laplacian Matrix
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Represents 
- Weights of relations between nodes
- Degrees/strengths of nodes

Interesting properties

• 𝐿 = 𝐵𝑑𝑖𝑎𝑔 𝐴!= 𝐵1
• 𝐿1 = 0 (sum line = 0)
• Positive semi-definite
• 𝜆- > 0 if graph connected 

+ “algebraic connectivity”

Weights 𝐴!" = 𝐴"! on edges 𝐿!= = −𝐴!= if edge (𝑖, 𝑗)

𝐿!! = 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑖 =>
=>!

𝐴!=

𝑑𝑖𝑎𝑔 𝐴$( ∈ ℝ * × *



Final algorithm: Laplacian System

𝑉 = 𝑑𝑖𝑎𝑔 ( … , 𝑣$( , … )
𝑅 ∈ ℝ * vector of 𝑅$(

# wins i

# wins j

(weighted) Laplacian matrix

log 7𝑤 = solutions of

=: 𝐿,

LK𝑧 = 𝐵𝑉9: log 𝑅

”variance” empirically estimated

[Spielman, Teng 2014], system solved up to accuracy 𝜖 in 𝑂 𝐸 log. 𝑛 log (
/

àNear linear time in size |𝑬| of data. 

For reasonable size systems, easier to use classical solver

Laplacian L2 is symmetric and diagonally dominant (𝐿2,!! = −∑"3! 𝐿2,!")

30

𝐵𝑉9:𝐵<𝑧 = 𝐵𝑉9: log 𝑅
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Error analysis
Disclaimer: Intuitive heuristic analysis

Formal proofs 
- Exist
- Were guided by this analysis
- Involve many technical difficulties
- Probably not for a presentation.

32

In particular we assume 
- 𝐸 log 𝑅!= = log 𝜌!=
- Variance log 𝑅!= =

L!"
M

- Exact 𝑣!=used in the algorithm

(all this is “asympotically” true)

𝜌$( ≔
𝑤$
𝑤(



Error analysis
log +𝑤 = solutions of LK𝑧 = 𝐵𝑉9: log 𝑅

How accurate is this estimate? à characterize Δ log𝑤 = log 7𝑤 − log𝑤

Scale Problem : 
- 𝑤, 7𝑤 only defined up to multiplicative constant
- log𝑤 , log 7𝑤 defined up to additive constant

33

𝑝$( =
𝑤$

𝑤$ + 𝑤(

à Arbitrary choice: log𝑤 , log 7𝑤 sum to 0,   i.e. orthogonal to 1

à log +𝑤 = 𝐿K
O𝐵𝑉9: log 𝑅 With 𝐿-

. Monroe Penrose Pseudo-inverse 
(kernel and image orthogonal to 1 )

𝜌$( ≔
𝑤$
𝑤(

true ratiolog𝑤 = 𝐿K
O𝐵𝑉9: log 𝜌
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log +𝑤 = 𝐿K
O𝐵𝑉9: log 𝑅

log𝑤 = 𝐿K
O𝐵𝑉9: log 𝜌

Δ log𝑤 = 𝐿%
&𝐵𝑉'(Δ log𝑅

𝐸 Δ log𝑤 Δ log𝑤1 = 𝐸 𝐿2
4𝐵𝑉'(Δ log𝑅 𝐿2

4𝐵𝑉'(Δ log𝑅
1

= 𝐸𝐿2
4𝐵𝑉'(Δ log𝑅 Δ log𝑅1 𝑉'(𝐵1𝐿2

4

= 𝐿2
4𝐵𝑉'((EΔ log𝑅 Δ log𝑅1)𝑉'(𝐵1𝐿2

4

à
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log +𝑤 = 𝐿K
O𝐵𝑉9: log 𝑅

log𝑤 = 𝐿K
O𝐵𝑉9: log 𝜌

Δ log𝑤 = 𝐿%
&𝐵𝑉'(Δ log𝑅

𝐸 Δ log𝑤 Δ log𝑤1 = 𝐸 𝐿2
4𝐵𝑉'(Δ log𝑅 𝐿2

4𝐵𝑉'(Δ log𝑅
1

= 𝐸𝐿2
4𝐵𝑉'(Δ log𝑅 Δ log𝑅1 𝑉'(𝐵1𝐿2

4

= 𝐿2
4𝐵𝑉'((EΔ log𝑅 Δ log𝑅1)𝑉'(𝐵1𝐿2

4

Square “co-variance” matrix, 𝐸 ×|𝐸|
- Diagonal because edges independent and we assume 𝐸 Δlog𝑅!= = 0
- for edge 𝑖, 𝑗 value 𝑣!=/𝑘

à EΔ log𝑅 Δ log𝑅< = :
M
𝑉

à
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log +𝑤 = 𝐿K
O𝐵𝑉9: log 𝑅

log𝑤 = 𝐿K
O𝐵𝑉9: log 𝜌

Δ log𝑤 = 𝐿%
&𝐵𝑉'(Δ log𝑅

𝐸 Δ log𝑤 Δ log𝑤1 = 𝐸 𝐿2
4𝐵𝑉'(Δ log𝑅 𝐿2

4𝐵𝑉'(Δ log𝑅
1

= 𝐸𝐿2
4𝐵𝑉'(Δ log𝑅 Δ log𝑅1 𝑉'(𝐵1𝐿2

4

= 𝐿2
4𝐵𝑉'((EΔ log𝑅 Δ log𝑅1)𝑉'(𝐵1𝐿2

4

= :M 𝐿K
O𝐵𝑉9:𝑉𝑉9:𝐵<𝐿K

O

= :
M
𝐿K
O𝐵𝑉9:𝐵<𝐿K

O

= :M 𝐿K
O𝐿K 𝐿K

O = :M 𝐿K
O

by property of Monroe-Penrose inverse

à
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Summary: For a given graph and vector of weight, for large 
enough k (non-asymptotic)

𝐸 Δ log𝑤 Δ log𝑤< ≃
1
𝑘
𝐿K
O Pseudo-inverse of weighted Laplacian,

Weights = inverse variance 𝑣$(/0

Square Error 𝐸 ∥ log +𝑤 − log𝑤 ∥; ≃ :
M
𝑇𝑟(𝐿K

O )



Reminder: Graph resistance
Weights 𝐴!" = 𝐴"! represent 
conductance of wires

Effective Resistance Ω!" = V / current if V volts  between i and j

Average resistance: Average over all pairs

Ω#- = 𝑉/𝐼

1 2

3
4

5

V
Volts

𝐼

Ω./ =
1
𝑛
𝑇𝑟 (𝐿0

1 ) =
1
𝑛
B
!2#

1
𝜎!(𝐿0)

With 𝐿-
. Monroe Penrose Pseudo-inverse 

Alternative measure of connectivity – less centered on “worst-case”
38
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Summary: For a given graph and vector of weight, for large 
enough k (non-asymptotic)

𝐸 Δ log𝑤 Δ log𝑤< ≃
1
𝑘
𝐿K
O Pseudo-inverse of weighted Laplacian,

Weights = inverse variance 𝑣$(/0

Square Error 𝐸 ∥ log +𝑤 − log𝑤 ∥; ≃ :
M
𝑇𝑟 𝐿K

O = Q
M
ΩK,RL

(à Mean square error 0
1
Ω, , 𝑎𝑣)
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Summary: For a given graph and vector of weight, for large 
enough k (non-asymptotic)

𝐸 Δ log𝑤 Δ log𝑤< ≃
1
𝑘
𝐿K
O Pseudo-inverse of weighted Laplacian,

Weights = inverse variance 𝑣$(/0

Square Error 𝐸 ∥ log +𝑤 − log𝑤 ∥; ≃ :
M
𝑇𝑟 𝐿K

O = Q
M
ΩK,RL

• Accuracy determined by average resistance

• 𝑂 TQ#

M vs 𝑂 T$Q%

M (But criteria not strictly comparable)

= 𝑂
𝑏𝑛-

𝑘 = 𝑂
𝑏𝑛Ω56
𝑘

- Ω"2 resistance unweighted graph
- b maximal ratio of weights.
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Learning from Pairwise Comparisons

Table 1. Comparison, for different families of graphs, of
eO
⇣

dmax
dmin(1��)

q
1

dmax

⌘
and eO(

p
b⌦max), which are, respectively,

the asymptotic bounds (3) in (Negahban et al., 2016), and the first
bound from our Theorem 1. The common decay in k�1/2 is omit-
ted for the sake of conciseness.

Graph Eq. (3) Theorem 1
Line b5/2n2 b

p
n

Circle b5/2n2 b
p

n
2D grid b5/2n b
3D grid b5/2n2/3 b

Star graph b5/2
p

n b
2 stars joined at centers b5/2n1.5 b

Barbell graph b5/2n3.5 b
p

n
Geo. random graph b5/2n b

Erdos-Renyi b5/2 b

1.5. Comparison to previous work

Table 1 quantifies how much the bound of Theorem 1 ex-
pressed in terms of ⌦max improves the asymptotic decay
rate on various graphs over the bound (Negahban et al.,
2016). The eO notation ignores log-factors. Both ran-
dom graphs are taken at a constant multiple threshold
which guarantees connectivity; for Erdos-Renyi this means
p = O((log n)/n) and for a geometric random graph, this
means connecting nodes at random positions at the unit
square when they are O

⇣p
(log n)/n

⌘
apart.

Most of the scalings for eigenvalues of normalized Lapla-
cians used in Table 1 are either known or easy to derive. For
an analysis of the eigenvalue of the barbell graph3, we refer
the reader to (Landau & Odlyzko, 1981); for mixing times
on the geometric random graph, we refer the reader to (Avin
& Ercal, 2007); for the resistance of an Erdos-Renyi graph,
we refer the reader to (Sylvester, 2016).

In terms of the worst-case performance in terms of the num-
ber of nodes, our bound grows at worst as eO

⇣
b
p

n/k
⌘

using the observation that ⌦max = O(n). By contrast, for
the barbell graph, the bound of (Negahban et al., 2016)
grows as eO(b5/2n3.5/

p
k), and it is not hard to see this is

actually the worst-case scaling in terms of the number of
nodes.

Finally, we note that these comparisons use slightly different
error measures: | sin(cW, w)| on our end vs the relative error
in the 2-norm after w,cW have been normalized to sum to
one, used by (Negahban et al., 2016). To compare both in
terms of the latter, we could multiply our bounds by

p
b (see

3Following (Wilf, 1989), the barbell graph refers to two com-
plete graphs on n/3 vertices connected by a line of n/3 vertices.

Lemma A.4).

1.6. Notation

The remainder of this paper is dedicated to the proof Theo-
rem 1 (Theorem 2 is proved in the Supplementary Informa-
tion). However, we first collect some notation we will find
occasion to use.

As mentioned earlier, we let Fij be the empirical rate of
success of item i in the k comparisons between i and j;
thus E[Fij ] = pij so that the previously introduced Rij can
be expressed as Rij =

Fij

Fji
. We also let ⇢ij = wi/wj =

pij/pji, to which Rij should converge asymptotically.

We will make a habit of stacking any of the quantities de-
fined into vectors; thus F , for example, denotes the vector
in R|E| which stacks up the quantities Fij with the choice
of i and j consistent with the orientation in the incidence
matrix B. The the vectors p and ⇢ are defined likewise.

2. Proof of the algorithm performance
(Theorem 1)

We begin the proof with a sequence of lemmas which work
their way to the main theorem. The first step is to introduce
some notation for the comparison on the edge (i, j).

Let Xij be the outcome of a single coin toss comparing
coins i and j. Using the standard formula for the variance
of a Bernoulli random variable, we obtain

Var(Xij) = pij(1 � pij) =
wiwj

(wi+wj)2

= 1
⇢ij+2+⇢�1

ij

=: 1
vij

, (6)

where we have defined vij = ⇢ij +2+⇢�1
ij . Observe that vij

is always upper bounded by 3+max(⇢ij , ⇢ji)  3+b  4b,
where we remind b � maxi,j

wi

wj
.

We first argue that all Fij are reasonably close to their ex-
pected values. For the sake of concision, we state the follow-
ing assumptions about the constants, �, k and the quantity
Cn,� . Note that some of the intermediate results hold under
weaker assumptions, but we omit these details for the sake
of simplicity.
Assumption 1. We have that �  e�1, Cn,� � c1 log(n/�),
and k � c2b(Cn,� + 1) max{⌦max, Emax}.

The following lemma is a standard application of Chernoff’s
inequality. For completeness, a proof is included in Section
C of the Supplementary Information.
Lemma 1. There exist absolute constants constants c1, c2

such that, under Assumption 1, we have

P

 
max

(i,j)2E
|Fij � pij | �

s
Cn,�

kvij

!
 �.

Negahban 16 Our result      

Factor 1/k  omitted 
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Lower bound 
:
M
𝐿K
O = Fisher information matrix, 

But, many relevant estimates biased à Cramer-Rao not directly applicable

Nevertheless: 

Theorem: For any nominal weights 𝑤 and any comparison graph, 
There is a way of generating 𝑤7 randomly in a ball of radius 𝑂%,8

(
9

(with ∑! 𝑤7 ! = ∑!𝑤!)
such that for any estimator 7𝑤 using the outcome 𝑌 of 𝑘 comparisons

𝐸 ∥ log 7𝑤 𝑌 − log𝑤7 ∥-≥ Ω
1
𝑘
𝑇𝑟 𝐿2

4

43

à For large enough # comparisons, simple least square algorithm 
is minimax optimal (up to constant factor) 



Proof technique
1) Generate 𝑤V by combining i.i.d. variations along eigenvectors of 𝐿K

2) Exploit

(see e.g. [Hajek & Raginsky, 2019])

3) Use Pinsker’s inequality

Minimax Rate for Learning From Pairwise Comparisons in the BTL Model

We first comment on the structure of our proof. We will be-
gin by fixing a vector w and an estimator of the true weights
ŵ(Y). This estimator ŵ(Y) is arbitrary and we may there-
fore intuitively think that the estimator ŵ(Y) “knows” w.
We then generate wz = w + 1p

k
R, where R is a particu-

lar random vector whose distribution we’ll specify below,
and generate k comparisons across each edge according to
weights wz . Once again, because the estimator ŵ(Y) is ar-
bitrary, we can also think of it as “knowing” the distribution
of wz . Provided the number of comparisons k satisfies some
lower bound depending on w and the graph, we will then
prove that

E
⇥
sin2(wz, ŵ(Y))

⇤
� ⌦

 
Tr(L†

�)

k||w||22

!
. (60)

Because the random vector R will be upper bounded with
probability one by some function of w and G, this proves
Theorem 2.

We now turn to the proof, i.e., to the construction of the
random vector R which will allow us to prove Eq. (60).
We will use Pw(y) to denote the density on the observation
space (consisting of k measurements across each edge of
the graph) if w was the vector of true weights. We will use
the following lemma [(Hajek & Raginsky, 2019) Chap. 13,
Corollary 13.2] to obtain a lower bound on the expectation
of the sine-squared:
Lemma 6.1. Let µ be any joint probability distribution of
a random pair (w, w0), such that the marginal distributions
of both w and w0 are equal to ⇡. Then

E⇡,Y[d(w, ŵ(Y)]] � Eµ

⇥
d(w, w0)(1 � kPw � Pw0kTV

⇤

where || · ||TV represents the total-variation distance be-
tween distributions and Y the observations.

It should be clear that under a random choice of w generated
according to some distribution ⇡ (described later), the ex-
pected error is a lower bound on the worst-case estimation
error over all possible w. Thus our goal is to massage the
right-hand side of Lemma 6.1 to obtain the right-hand side
of Eq. (59).

Actually, we need a slight modification of Lemma 6.1: as
remarked in (Hendrickx et al. , 2019), it is sufficient that
d(w, w0) satisfies a weak version of triangle inequality, i.e.,
↵d(w1, w2)  d(w1, ŵ) + d(w2, ŵ) for some pre-specified
constant ↵, with the result that the right-hand side in the
above lemma is multiplied by ↵. In particular, our (square)
error criterion sin2(ŵ, wz) satisfies the weak triangle in-
equlity with a factor of ↵ = 1/2, see Lemma A.1 from
(Hendrickx et al. , 2019), so we can apply Lemma 6.1 to it
with an extra factor of 1/2 on the right-hand side.

Let vi be the eigenvectors of the diag(w)�1LV diag(w)�1

with corresponding eigenvalues �i. In the next paragraph,

we will use these eigenvectors to design the distribution
for w which we will use to obtain our lower bound. Note
that this is the first point where our argument diverges from
the proof of (Hendrickx et al. , 2019); the introduction of
this rescaling by diag(w)�1 here is motivated by Eq. (17)
and Eq. (18), where the quantity diag(w)�1LV diag(w)�1

appears, and comes from a desire to lower bound the error
associated with the regularized solution Ŵ r.

Let z2, . . . , zn be i.i.d random variable taking values 1 and
�1 with equal probability. We then set

wz = w + �
nX

i=2

zip
�i

vi (61)

where, the sum starts at i = 2 to omit the eigenvector of
diag(w)�1LV diag(w)�1 associated with the zero eigen-
value (which is just w), � is suitably small ( to be specified
later), and also we set z1 = 1. We remark that we will later
choose � to be on the order of 1/

p
k, so that the above ex-

pression can be written as wz = w + (1/
p

k)R, where the
random vector R depends on w and the underlying graph,
and further with probability one R cannot be larger than
some function of w and the graph.

Let V be the unitary matrix which has vi as columns; we
can write

wz = V ⇤z,

where this relation defines the entries of ⇤ (e.g., �i =
�/
p
�i for i = 1, . . . , n). We note that the norm of wz’s

defined this way are equal, i.e.,

kwzk2 =

vuut||w||22 + �2

nX

i=2

1

�i

=
q

||w||22 + �2Tr
⇥
(diag(w)�1Lvdiag(w)�1)†⇤ . (62)

Intuitively the error in estimating wz should be lower
bounded in terms of the errors in estimating zi, and indeed
(Hendrickx et al. , 2019) showed that

min
ŵ(Y)

E⇡,Y[⇢(wz, ŵ(Y))] =

nX

i=2

min
⌘i(Y)

�2
i

kwzk2
E⇡,Y (zi � ⌘i(Y))2 ,

where Y is the vector of outcomes of the comparisons. We
are now going to apply Lemma 6.1 to each term on the right
hand side individually. Following (Hendrickx et al. , 2019),
we define the distribution µi(z, z0) by keeping z uniformly
distributed in {�1, 1}n, and flipping the ith bit to obtain z0

(formally, z0i = �zi and z0j = zj for every j 6= i). Clearly,
E⇡,Ydi(z, z0) = 4. Moreover, by Pinsker’s inequality

kP⌦k
w � P⌦k

w0 k2
TV  1

2
DKL(P⌦k

w kP 0⌦k
w ) (63)

 O(k�2)

where the proof of the second inequality (which holds for
small enough �) is somewhat involved and is relegated to
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Because the random vector R will be upper bounded with
probability one by some function of w and G, this proves
Theorem 2.

We now turn to the proof, i.e., to the construction of the
random vector R which will allow us to prove Eq. (60).
We will use Pw(y) to denote the density on the observation
space (consisting of k measurements across each edge of
the graph) if w was the vector of true weights. We will use
the following lemma [(Hajek & Raginsky, 2019) Chap. 13,
Corollary 13.2] to obtain a lower bound on the expectation
of the sine-squared:
Lemma 6.1. Let µ be any joint probability distribution of
a random pair (w, w0), such that the marginal distributions
of both w and w0 are equal to ⇡. Then

E⇡,Y[d(w, ŵ(Y)]] � Eµ

⇥
d(w, w0)(1 � kPw � Pw0kTV

⇤

where || · ||TV represents the total-variation distance be-
tween distributions and Y the observations.

It should be clear that under a random choice of w generated
according to some distribution ⇡ (described later), the ex-
pected error is a lower bound on the worst-case estimation
error over all possible w. Thus our goal is to massage the
right-hand side of Lemma 6.1 to obtain the right-hand side
of Eq. (59).

Actually, we need a slight modification of Lemma 6.1: as
remarked in (Hendrickx et al. , 2019), it is sufficient that
d(w, w0) satisfies a weak version of triangle inequality, i.e.,
↵d(w1, w2)  d(w1, ŵ) + d(w2, ŵ) for some pre-specified
constant ↵, with the result that the right-hand side in the
above lemma is multiplied by ↵. In particular, our (square)
error criterion sin2(ŵ, wz) satisfies the weak triangle in-
equlity with a factor of ↵ = 1/2, see Lemma A.1 from
(Hendrickx et al. , 2019), so we can apply Lemma 6.1 to it
with an extra factor of 1/2 on the right-hand side.

Let vi be the eigenvectors of the diag(w)�1LV diag(w)�1

with corresponding eigenvalues �i. In the next paragraph,

we will use these eigenvectors to design the distribution
for w which we will use to obtain our lower bound. Note
that this is the first point where our argument diverges from
the proof of (Hendrickx et al. , 2019); the introduction of
this rescaling by diag(w)�1 here is motivated by Eq. (17)
and Eq. (18), where the quantity diag(w)�1LV diag(w)�1

appears, and comes from a desire to lower bound the error
associated with the regularized solution Ŵ r.

Let z2, . . . , zn be i.i.d random variable taking values 1 and
�1 with equal probability. We then set

wz = w + �
nX

i=2

zip
�i

vi (61)

where, the sum starts at i = 2 to omit the eigenvector of
diag(w)�1LV diag(w)�1 associated with the zero eigen-
value (which is just w), � is suitably small ( to be specified
later), and also we set z1 = 1. We remark that we will later
choose � to be on the order of 1/

p
k, so that the above ex-

pression can be written as wz = w + (1/
p

k)R, where the
random vector R depends on w and the underlying graph,
and further with probability one R cannot be larger than
some function of w and the graph.

Let V be the unitary matrix which has vi as columns; we
can write

wz = V ⇤z,

where this relation defines the entries of ⇤ (e.g., �i =
�/
p
�i for i = 1, . . . , n). We note that the norm of wz’s

defined this way are equal, i.e.,
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vuut||w||22 + �2

nX

i=2

1
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=
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||w||22 + �2Tr
⇥
(diag(w)�1Lvdiag(w)�1)†⇤ . (62)

Intuitively the error in estimating wz should be lower
bounded in terms of the errors in estimating zi, and indeed
(Hendrickx et al. , 2019) showed that

min
ŵ(Y)

E⇡,Y[⇢(wz, ŵ(Y))] =
nX

i=2

min
⌘i(Y)

�2
i

kwzk2
E⇡,Y (zi � ⌘i(Y))2 ,

where Y is the vector of outcomes of the comparisons. We
are now going to apply Lemma 6.1 to each term on the right
hand side individually. Following (Hendrickx et al. , 2019),
we define the distribution µi(z, z0) by keeping z uniformly
distributed in {�1, 1}n, and flipping the ith bit to obtain z0

(formally, z0i = �zi and z0j = zj for every j 6= i). Clearly,
E⇡,Ydi(z, z0) = 4. Moreover, by Pinsker’s inequality

kP⌦k
w � P⌦k

w0 k2
TV  1

2
DKL(P⌦k

w kP 0⌦k
w ) (63)

 O(k�2)

where the proof of the second inequality (which holds for
small enough �) is somewhat involved and is relegated to

+ exploit decomposition properties of KL-divergence
44
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Other performance criteria?

46

Direct (naïve) approach: 

How about E ∥ 𝐴Δ log𝑤 ∥;

Ex: Δ log𝑤! − Δ log𝑤" = error on (log𝑤! − log𝑤")
∼ relative error on of #!

#"

𝐸 Δ log𝑤 Δ log𝑤1 ≃
1
𝑘 𝐿2

4

E ∥ 𝐴Δ log𝑤 ∥-= 𝑇𝑟(𝐴 𝐸 Δ log𝑤 Δ log𝑤1 𝐴1) ≃
1
𝑘 𝑇𝑟(𝐴𝐿2

4𝐴1)

Problem: assumption ∑! log𝑤! = 0 not necessarily “fair”/ relevant
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log𝑤3

log𝑤0

log +𝑤

log𝑤

Invariance under addition of constant
à need to analyze distance between equivalence classes
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log𝑤3

log𝑤0

log +𝑤

log𝑤𝑧( + 𝑧- = 0

Invariance under addition of constant
à need to analyze distance between equivalence classes

Elements 
used in our 
analysis
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log𝑤3

log𝑤0

log +𝑤

log𝑤𝑧( + 𝑧- = 0

Not necessarily best
to compute distance

∥ 𝐴𝑧 ∥-

Invariance under addition of constant
à need to analyze distance between equivalence classes

Elements 
used in our 
analysis



Other performance Criteria: Summary
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• Quadratic E ∥ 𝐴Δ log𝑤 ∥;

- Result and minimax optimality extend 
- Direct approach (

9
𝑇𝑟(𝐴𝐿2

4𝐴1) valid if 𝐴1 = 0
- Also simple expression for full rank 𝐴.

• Nonlinear criteria: ex: sin(𝑤, +𝑤)
- Also extends under assumptions
- Based on  ∥ ∇𝑉Δ log𝑤 ∥-

In particular error on (log𝑤! − log𝑤")

E ∥ Δ log𝑤! − Δ log𝑤" ∥)=
1
k
𝑇𝑟 e3 − e4

+
𝐿5
1 e3 − e4 = Ω5,!"

Resistance between 𝑖 and 𝑗
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3D grid
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Minimax Rate for Learning From Pairwise Comparisons in the BTL Model
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Figure 1. Performance on the 2D grid, 3D grid, and Erdos-Renyi
graph. All three plots show | sin(Ŵ , w)| on the y-axis vs the
number of samples per edge on the x-axis. For the plots, the
weights were generated randomly in the interval [1, 20]. The 2D
and the E-R graph have 100 nodes, while the 3D grid has 125
nodes; the average degree of the E-R graph is 10. Each data point
is the average of 50 simulations.

0 2000 4000 6000 8000 10000 12000 14000
k

10-2

10-1

100

emp weight
eig

Figure 3. Ŵ3 � Ŵ5 for the eigenvector method in red and the
WLSM in blue on the graph of Figure 2.

close to them, as our simulations do not appear to detect
any significant difference in performance. Indeed, note that
the 3D grid has a very strong divergence between average
resistance (constant) and spectral gap (' n2/3), and yet our
simulation on the 3D grid showed no difference between the
eigenvector based method (which has been upper bounded
in terms of scaling with the spectral gap) and the WLSM
(which we know to scale with resistance).

Moreover, a plausible conjecture is that the methods in
question achieve optimal performance not just in distance
between the vectors Ŵ , w but also among Ŵi �wi for each
node i (after appropriate normalization). We conjecture this
is indeed the case for the WLSM. However, our simulation
suggests this may not be the case for the eigenvector method,
as we have constructed an example (Figures 2 and 3) where
it underperforms in this metric.

4. Conclusions
Our main contribution is the determination of the asymptotic
minimax rate for inference from pairwise comparisons. In
contrast to previous work, our result is exact up to constant
factors.

Besides the conjectures discussed in Section 3, the most nat-
ural open question raised by our work is to understand how
big the number of samples per edge k has to be for the mini-
max rate derived in this paper to kick in. We would actually
conjecture that tr(L†

�)/||w||22 is, up to constant factors, not
only the minimax rate but also the sample complexity of
recovering (a scaled version of) w.
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125 nodes
𝑤! i.i.d. geometric distribution in [1, 20]

sin(7𝑤,𝑤)

𝑘



Erdos-Renyi
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100 nodes, avg degree 10
𝑤! i.i.d. geometric distribution in [1, 20]
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Figure 1. Performance on the 2D grid, 3D grid, and Erdos-Renyi
graph. All three plots show | sin(Ŵ , w)| on the y-axis vs the
number of samples per edge on the x-axis. For the plots, the
weights were generated randomly in the interval [1, 20]. The 2D
and the E-R graph have 100 nodes, while the 3D grid has 125
nodes; the average degree of the E-R graph is 10. Each data point
is the average of 50 simulations.
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Figure 3. Ŵ3 � Ŵ5 for the eigenvector method in red and the
WLSM in blue on the graph of Figure 2.

close to them, as our simulations do not appear to detect
any significant difference in performance. Indeed, note that
the 3D grid has a very strong divergence between average
resistance (constant) and spectral gap (' n2/3), and yet our
simulation on the 3D grid showed no difference between the
eigenvector based method (which has been upper bounded
in terms of scaling with the spectral gap) and the WLSM
(which we know to scale with resistance).

Moreover, a plausible conjecture is that the methods in
question achieve optimal performance not just in distance
between the vectors Ŵ , w but also among Ŵi �wi for each
node i (after appropriate normalization). We conjecture this
is indeed the case for the WLSM. However, our simulation
suggests this may not be the case for the eigenvector method,
as we have constructed an example (Figures 2 and 3) where
it underperforms in this metric.

4. Conclusions
Our main contribution is the determination of the asymptotic
minimax rate for inference from pairwise comparisons. In
contrast to previous work, our result is exact up to constant
factors.

Besides the conjectures discussed in Section 3, the most nat-
ural open question raised by our work is to understand how
big the number of samples per edge k has to be for the mini-
max rate derived in this paper to kick in. We would actually
conjecture that tr(L†

�)/||w||22 is, up to constant factors, not
only the minimax rate but also the sample complexity of
recovering (a scaled version of) w.
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is the average of 50 simulations.
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suggests this may not be the case for the eigenvector method,
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it underperforms in this metric.

4. Conclusions
Our main contribution is the determination of the asymptotic
minimax rate for inference from pairwise comparisons. In
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factors.
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Only Marginal improvement

• Did we miss something?
• Is our algorithm better? 

Or just more amenable to analysis?



Worst-case ≠ Typical case for a distribution

• Eigenvector method [Negahban 16] does indeed appear to 
perform better than its bound.
• But, ≃ as weighted least-square method with weights 
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à Neglects information combing from edges between “small weights”

But effect can be averaged out when weights i.i.d. randomly selected



On a specific graph 
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nodes; the average degree of the E-R graph is 10. Each data point
is the average of 50 simulations.
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resistance (constant) and spectral gap (' n2/3), and yet our
simulation on the 3D grid showed no difference between the
eigenvector based method (which has been upper bounded
in terms of scaling with the spectral gap) and the WLSM
(which we know to scale with resistance).

Moreover, a plausible conjecture is that the methods in
question achieve optimal performance not just in distance
between the vectors Ŵ , w but also among Ŵi �wi for each
node i (after appropriate normalization). We conjecture this
is indeed the case for the WLSM. However, our simulation
suggests this may not be the case for the eigenvector method,
as we have constructed an example (Figures 2 and 3) where
it underperforms in this metric.

4. Conclusions
Our main contribution is the determination of the asymptotic
minimax rate for inference from pairwise comparisons. In
contrast to previous work, our result is exact up to constant
factors.

Besides the conjectures discussed in Section 3, the most nat-
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big the number of samples per edge k has to be for the mini-
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it and analyze its properties, and whatever upper and lower
bounds we obtain for the sine of the angle between Ŵ r

and w will apply to the solutions we can actually compute,
since the angle between two vectors is unchanged if one of
them is scaled. It turns out that minimax optimal bounds
come out of the analysis only after analyzing the solution
Ŵ r defined in Eq. (19). Attempts based on other solutions
of Eq. (16) resulted in upper and lower bounds that do not
match (unless one introduces a scaling akin to considering
Ŵ r in the analysis). This is the main proof ingredient
present in this paper that was not used in earlier works.

Analyzing the quantity Ŵ r is the same as analyzing the
solution logcW of the underlying least-squares problem of
Eq. (16) with smallest norm relative to the inner product
hx, xiw =

Pn
i=1 w2

i x2
i . Our approach may thus be viewed

as part of a long line of research suggesting that the key is
often to choose a metric that is natural for the problem. It
is analysis with respect to this (scaled) inner product that
ultimately leads to the weighted Laplacian L� appearing in
our main results and not the ordinary Laplacian L.

3. Simulations and Two Conjectures
We perform a number of experiments designed to gauge
the accuracy of the WLSM relative to competing methods.
Since we are not aware of any real data sets involving com-
parisons where the true weights are known, we will use
synthetic data. As we will see shortly, two conjectures are
suggested by our results. We simulate five methods:

1. The least-squares method. This is the method that
solves Eq. (9) for z⇤ and then sets Ŵi = ez⇤

i . In the
figures below, it is abbreviated as “LS.”

2. Least squares with artificial weights. This solves for
z⇤ using Eq. (11) and then sets Ŵi = ez⇤

i as above. It
cannot be implemented in practice because we do not
know the true variances vij used in Eq. (11), but it can
be used as a useful benchmark to measure degradation
in performance from using estimates of these variances.
This is abbreviated “artif weight” in the figures.

3. Iterative least squares. This method begins by solving
Eq. (11) by setting vij = 1. It then uses the computed
wij to compute vij using Eq. (10), and then proceeds
to re-solve Eq. (11). This cycle (new wij leading to
new vij then leading to new wij) is then repeated. This
is abbreviated by “iter weight” in the figures.

4. Our main algorithm, the WLSM method, which is
abbreviated with “emp weight” in the figures.

5. The eigenvector-based algorithm of (Negahban et al. ,
2012; 2016).

In general, we do not see much of a difference between any
of the methods on simple graphs. Representative results are
shown in Figure 1 for the 2D grid, the 3D grid, and the Erdos-
Renyi random graph. While the method we propose in this
paper is usually the best, the gains are extremely modest
in the neighborhood of a few percent, as can be eyeballed
from the figures. Only three graphs are shown because the
pattern is the same on all graphs we have simulated.

However, with some experimentations we have found that
the WLSM (along with other least-squares methods) has a
significant advantage as compared against the eigenvector-
based method in terms of accurately recovering all the
weights, especially when there are many nodes of small
weight. We give one example of such a graph in Figure 2.
We take a line graph, pick two nodes that are a neighbor
appart, and connect them through a complete bipartite graph
with newly introduced nodes (on the right-hand side of the
figure). The key idea is that the nodes on the right-hand side
(labeled u1, u2, u3 in the figure) will be assigned weight
wi of of 1, while the nodes on the left hand side will have
weights that increase geometrically from 1 to b. Thus, for
large b, the nodes u1, . . . , u3 are not very relevant to (any
notion of) distance between normalized versions of Ŵ and
w due to their comparatively small weights. However, ne-
glecting them has the effect of neglecting a large number
of paths between w3 and w5 which can be used to help
estimate the weights on the left-hand side.

w5

u1

u2

u3w6

w7

w4

w3

w2

w1

Figure 2. A graph on which the
eigenvector-based approach un-
derperform least-squares meth-
ods.

Figure 3 shows the dif-
ference between Ŵ3 �
Ŵ5 when w3 = w5 and
there are approximately 50
nodes ui on the right-hand
side. We compare the
difference Ŵ3 � Ŵ5 for
both the WLSM and the
eigenvector-based method
of (Negahban et al. , 2012;
2016). Each number repre-
sents a single run of the al-
gorithm with new random
comparisons. We see that
the WLSM outperforms by
about an order of magni-
tude.

Our simulations thus point
to two conjectures which
can be the subject of fur-
ther work. The first con-
jecture is that the earlier
eigenvector based methods
also achieve either the min-
imax scalings we have identified here, or something very

Error on
|𝑊4 −𝑊5|

Weights selected so that relevant information between small values

(50 nodes 𝑢$)



Conclusion on simulations

• Outperforms previously existing methods
• Effect marginal on “randomized case”
• Significantly more accurate

• For local differences
• When information comes from edges between small 𝑤!
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Impact of variance approximation
𝑣!= ≔

a!
a"
+ 2 + a"

a!Idealized algorithm uses

Not available à approximated by empirical  A𝑣!" ≔ 𝑅!" + 2 + 𝑅!"'(

But Experimentally: Empirical variance outperforms real one
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Theoretical analysis: empirical approx. shown “not to degrade solution too much”
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Figure 5.1: Performance comparison for artificial and empirical methods

It is notable that the empirical method outperforms the artificial method both
for a high and for a low number of comparisons. However, both methods converge
towards the same performances as the number of comparisons becomes very high.

The fact that the empirical method outperforms the artificial algorithm in this
scenario is su�cient to justify an in-depth analysis of the behaviour of the empirical
method.

5.2 Methodology
In order to compare the two above-mentioned methods, focus is set on the point
where these methods di�er from each other: the computation of vij, the variance
of logRij.

On the one hand, the artificial method computes the variance based on the
solutions wi as follows:

vij = wi

wj

+ wj

wi

+ 2

This means that no matter the realisations Fij of the comparisons over every
edge, the value of the variance will always be the same.

On the other hand, the empirical method computes the variance based on the
observations Fij as:

V̂ij = Fij

Fji

+ Fji

Fij

+ 2
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Algorithm using empirical approximation

Algorithm with real variance
(only available on synthetic data)



Implicit “regularization”
k=10:  𝑤( = 8,𝑤- = 2

8 wins 
(expected)

7 wins

9 wins

Prob. log 𝑅!" A𝑣(-
Weight in 
least square

30%

20%

26%

log
7
3
≃0.85

log
8
2
≃1.38

log
9
1
≃2.19

- 38%

+ 58%

8
2
+ 2 +

2
8
= 6.25

6
0
+ 2 + 0

6
= 11.11

7
4
+ 2 + 4

7
= 4.76

0.16

0.21

0.09

- 43%

+ 30%

Empirical variance appear to “smoothen outs” dangerous outlyers. 
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Experimental validation 
3 node graphs,  𝑊6 = 1,𝑊7 = 3 à 25 wins expected
Edges towards 𝑊8 set artificially at expected value

5.4 Probabilistic analysis
Di�erent possible observation e�ects have been explained in the previous sections.
Depending on the realisations on each edge, one method will perform better than
the other. So why does the empirical method perform better overall? To answer
this question, it is necessary to introduce some probabilistic computations. Both
methods can be compared considering the expectation of their error under the
same circumstances as in the previous analysis. The expectation of the error can
be computed as:

E(‘sin) =
kÿ

FIJ=1
P (FIJ) ú ‘FIJsin

In this expression, ‘FIJsin denotes the error corresponding to the case where item I
wins FIJ times. P (FIJ) is the probability to observe the situation where item I
wins FIJ times out of k comparisons.

Since the outcomes of the comparisons are i.i.d. Bernoulli, this probability can
be computed as:

P (FIJ) =
A
k
FIJ

B
(pIJ)FIJ ú (1 ≠ pIJ)k≠FIJ

Adding the probability of each realisation to the results, figure 5.7 is obtained:
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Figure 5.7: Error comparison and realisation probabilities
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The probability curve is as expected. Indeed, the expected realisation is when
item I wins pIJ ú k = 25 times. One can see that the probability that FIJ /œ [10; 40]
is close to zero. Therefore, focus will be set on FIJ œ [10; 40] only.

Computing the expectation of the error for both methods determines which
method is expected to work the best. Here are the results:

Error expectation
Artificial method Eart = 0.0322
Empirical method Eemp = 0.0317

The empirical method yields a lower expectation, thus outperforming the artificial
method. However, this is not su�cient to explain why this method works better
overall. It has been shown in the previous sections that overshoot and undershoot
scenarios yield di�erent behaviour of the methods. However, the probability for
those situations to occur has not yet been taken into account.

To consider this probability, one can compute ‘sin(FIJ) ú p(FIJ), as shown on
figure 5.8:
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Figure 5.8: ‘(FIJ) ú P (FIJ) for FIJ œ [10, 40]

The integral of this curve over every realisation is equal to the expectation of
the error. One can see a clear distinction between overshoot and undershoot cases.
For both cases, computing the di�erence between the curves shows the degree to
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Impact of # wins + probability Contribution to error

Winand, M., & Hendrickx, J. (2021). Learning from pairwise comparisons: an empirical analysis. 
Ecole polytechnique de Louvain, Université catholique de Louvain.
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Experimental validation 
3 node graphs,  𝑊6 = 1,𝑊7 = 3 à 25 wins expected
Edges towards 𝑊8 set artificially at expected value
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Di�erent possible observation e�ects have been explained in the previous sections.
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wins FIJ times out of k comparisons.

Since the outcomes of the comparisons are i.i.d. Bernoulli, this probability can
be computed as:

P (FIJ) =
A
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FIJ

B
(pIJ)FIJ ú (1 ≠ pIJ)k≠FIJ

Adding the probability of each realisation to the results, figure 5.7 is obtained:
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The probability curve is as expected. Indeed, the expected realisation is when
item I wins pIJ ú k = 25 times. One can see that the probability that FIJ /œ [10; 40]
is close to zero. Therefore, focus will be set on FIJ œ [10; 40] only.

Computing the expectation of the error for both methods determines which
method is expected to work the best. Here are the results:

Error expectation
Artificial method Eart = 0.0322
Empirical method Eemp = 0.0317

The empirical method yields a lower expectation, thus outperforming the artificial
method. However, this is not su�cient to explain why this method works better
overall. It has been shown in the previous sections that overshoot and undershoot
scenarios yield di�erent behaviour of the methods. However, the probability for
those situations to occur has not yet been taken into account.

To consider this probability, one can compute ‘sin(FIJ) ú p(FIJ), as shown on
figure 5.8:
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The integral of this curve over every realisation is equal to the expectation of
the error. One can see a clear distinction between overshoot and undershoot cases.
For both cases, computing the di�erence between the curves shows the degree to
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Impact of # wins + probability Contribution to error

Appears to confirm implicit regularization idea
But: result of “favorable” trade-off between opposite (important) effects

Open question
- Rigorous understanding
- Further exploitation of idea or phenomenon

Winand, M., & Hendrickx, J. (2021). Learning from pairwise comparisons: an empirical analysis. 
Ecole polytechnique de Louvain, Université catholique de Louvain.
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Relaxing Assumptions

64

• Same number 𝑘 of comparisons on every edge

- Can be relaxed, 
- Some technical aspects
- Ratio min/max # comparison for some results

• i.i.d. comparisons 

- Bounded dependence between comparison (most likely) OK
- Persistent dependence between edges à adapting variance 



Extending the notion of comparison

65

• Pick best out of three
• Rank three
• Comparison with ties… 

- Many extensions possible (only approximative analysis so far) 
but depends on model specifics

Branders, M., Vekemans, A., & Hendrickx, J. Recovering weights
from comparison results in extensions of BTL model

- Multi-comparisons: sometimes non-diagonal Variance Matrix 
(expression of least square in terms of non-independent events)

- Game : find relation of the type

𝑤!
:&𝑤"

:'𝑤9
:8 ≃ some function of the outcome (for large k) 



Other models - criteria

𝑝$( =
𝑤$

𝑤$ + 𝑤( Other models?

• Results extend to large class of ordinal models:

• Technical assumption needed (e.g. 𝑓 log-concave)
• Not 100% clear yet which ones are actually necessary

• Extension to (asymptotically) any continuous quality criterion

𝑝!= = 𝑓(𝜙 𝛽! − 𝜙 𝛽= )

66

Bradley-Terry-Luce

BTL:
- 𝜙 = log
- 𝑓(𝑧) = 0

09:#



Conclusions
- Quality of items recovered from results of 

comparisions on netork à ranking
- Near-linear time algorithm.
- Linear least-square,  coefficients nonlinear in data.
- No hyperparameters, tuning etc. 
- Outperforms past methods, Minimax optimal
- Performances Driven by 𝐿!

" and Resistance of 
comparison graph

- Many possible generalizations
- Implicit regularization, not fully understood

67



Some further research directions

• Online version
• Comparison arriving one by one
• Choosing Comparison based on past data
• Explore and Exploit

• Regime of small # comparisons (large n)
• Prior Incorporation?
• Exploitation of implicit regularization

68



Thank you for your attention

Balint Daroczy

Maxime Winand Astrid VekemansMarine Branders

Alex Olshevsky (BU), Venkatesh Saligrama (BU)
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+ Open position to be filled ASAP

julien.hendrickx@uclouvain.be
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