
Graph matching: from fundamental limits to algorithms

Marc Lelarge (Inria and ENS Paris)

Alignment of graphs consists in finding a mapping between the nodes of two graphs which
preserves most of the edges. For two correlated Erdős–Rényi, we present information-theoretic
results in the sparse regime. We then propose an algorithm based on local comparisons and prove
theoretical guarantees. Finally, we show the empirical success of learning algorithms.
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Alignment of Graphs



Problem : alignment of graphs

From graph 1 (on the left), put indices on its vertices, perturb the graph by
adding and removing a few edges and remove indices to obtain graph 2 (on
the right).
Task : recover the indices on vertices of graph 2.
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Result with FGNN

Green vertices are good predictions. Red vertices are errors (graph 2).
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Result with FGNN

Green vertices are good predictions. Red vertices are errors (graph 1).
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Result with FGNN

Here are the ’wrong’ matchings or cycles.
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Result with FGNN

Superposing the 2 graphs : green edges in both, orange and blue edges in
graph 1 and 2 resp.
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Result with FGNN

Matched edges.
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Result with FGNN

Mismatched edges.
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Result with FGNN

Green vertices are well paired vertices. Red vertices are errors.
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Motivation
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Theoretical results



Correlated Erdős-Rényi (1)

Two graphs G and G′ with the same set of nodes [n] and with respectively
blue and red edges. The blue and red edges are obtained by sampling
uniformly at random :

• with probability λs/n to get two-colored edges ;
• with probability λ(1− s)/n to get a blue (monochromatic) edge ;
• with probability λ(1− s)/n to get a red (monochromatic) edge ;
• with probability 1− λ(2− s)/n to get a non-edge,

where λ > 0 and s ∈ [0, 1] are �xed parameters when n will tend to in�nity.
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Correlated Erdős-Rényi (2)

We then relabel the vertices of the red graph G′ with an uniform
independent permutation π∗ ∈ Sn, and we observe G and H := G′π∗ .
The marginals G, H are Erdős-Rényi random graphs with average degree λ.

The goal is to estimate the latent vertex correspondence π∗.
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Exact recovery of π∗

Dependence of joint distribution in e(G ∧ G′) :

P(G = G,G′ = G′) ∝
[
s(n− λ(2− s))

λ(1− s)2
]e(G∧G′)

.

MAP estimator of π∗ is the solution of the QAP problem :

arg max
Π
〈A,ΠBΠT〉

Only feasible when λ = Ω(log n) Cullina and Kiyavash (2017), Mao et al.
(2022) Ding et al. (2022), Ding and Du (2022).

In the rest of this talk, we consider the sparse regime where the average
degree λ is not scaling with n.

17



Exact recovery of π∗

Dependence of joint distribution in e(G ∧ G′) :

P(G = G,G′ = G′) ∝
[
s(n− λ(2− s))

λ(1− s)2
]e(G∧G′)

.

MAP estimator of π∗ is the solution of the QAP problem :

arg max
Π
〈A,ΠBΠT〉

Only feasible when λ = Ω(log n) Cullina and Kiyavash (2017), Mao et al.
(2022) Ding et al. (2022), Ding and Du (2022).

In the rest of this talk, we consider the sparse regime where the average
degree λ is not scaling with n.

17



Exact recovery of π∗

Dependence of joint distribution in e(G ∧ G′) :

P(G = G,G′ = G′) ∝
[
s(n− λ(2− s))

λ(1− s)2
]e(G∧G′)

.

MAP estimator of π∗ is the solution of the QAP problem :

arg max
Π
〈A,ΠBΠT〉

Only feasible when λ = Ω(log n) Cullina and Kiyavash (2017), Mao et al.
(2022) Ding et al. (2022), Ding and Du (2022).

In the rest of this talk, we consider the sparse regime where the average
degree λ is not scaling with n.

17



Planted graph alignment

For any subset C ⊂ [n], the performance of any one-to-one estimator
σ̂ : C → [n]

ov(π∗, σ̂) :=
1
n
∑

i∈C
1σ̂(i)=π∗(i).

Note that the estimator σ̂ only consists in a partial matching. The error
fraction of σ̂ with the unknown permutation π∗ is de�ned as

err(π∗, σ̂) :=
1
n
∑

i∈C
1σ̂(i) 6=π∗(i) =

|C|
n − ov(π∗, σ̂).

A sequence of injective estimators {σ̂n}n is said to achieve

• Partial recovery if there exists some ε > 0 such that
P(ov(π∗, σ̂) > ε) −→

n→∞
1,

• One-sided partial recovery if it achieves partial recovery and
P(err(π∗, σ̂) = o(1)) −→

n→∞
1.
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A (local) algorithm
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A (local) algorithm
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From graphs to trees

For i ∈ V(G),u ∈ V(H), look at the neighborhoods Ni and Nu at depth d :

• if u = π∗(i), (Ni,Nu) ' GW trees of o�spring Poi(λ), with intersection
of o�spring Poi(λs) (model P1,d) ;
• if u 6= π∗(i), (Ni,Nu) ' independent GW trees of o�spring Poi(λ)

(model P0,d).

Hypothesis testing : Can we test P1,d versus P0,d ?
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Computing the likelihood ratio

For two trees of depth d, the likelihood ratio Ld(t, t′) :=
P1,d(t,t′)
P0,d(t,t′) veri�es

Ld(t, t′) =
c∧c′∑

k=0

ψ(k, c, c′)
∑

σ∈S(k,c)
σ′∈S(k,c′)

k∏

i=1

Ld−1(tσ(i), t′σ′(i)),

where c and c′ are the number of children of the roots,
ψ(k, c, c′) = eλs × sk s̄c+c

′−2k

λkk!
, and S(k, `) denotes the set of injective

mappings from [k] to [`].
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Correlation detection in trees

One-sided tests : tests Td : Xd ×Xd → {0, 1} such that
P0,d(Td = 0) = 1− o(1) and lim infd P1,d(Td = 1) > 0 (i.e. vanishing type I
error and non vanishing power).

Theorem
Let

KLd := KL(P1,d‖P0,d) = E1,d [log(Ld)] .

Then the following propositions are equivalent :

(i) There exists a one-sided test for deciding P0,d versus P1,d,
(ii) lim

d→=∞
KLd = +∞ and λs > 1,

(iii) with probability 1 − pext(λs) > 0, Ld diverges to +∞ with rate
Ω
(

exp
(

Ω(1)× (λs)d
))
.
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One-sided partial graph alignement

Recall : estimator σ̂ : C → [n] is said to achieve

• Partial recovery if there exists some ε > 0 such that
P(ov(π∗, σ̂) > ε) −→

n→∞
1,

• One-sided partial recovery if it achieves partial recovery and
P(err(π∗, σ̂) = o(1)) −→

n→∞
1.

Theorem
For given (λ, s), if one-sided correlation detection is feasible, then one-sided
partial alignment in the correlated Erdős-Rényi model G(n, λ/n, s) is
achieved in polynomial time by our algorithm.
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Results in the regime with constant mean degree

Ganassali et al. (2021)
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Results in the regime with constant mean degree
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Results in the regime with constant mean degree

Ganassali et al. (2022)
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A learning algorithm



Learning the graph alignment problem with Siamese FGNNs

G1 ∈ {0, 1}n
2

E1 ∈ Rn×b

E1ET2 ∈ Rn2

G2 ∈ {0, 1}n
2

E2 ∈ Rn×b

FGNN

FGNN

• The same FGNN is used for both graphs.

• We added a LAP solver to get a permutation from E1ET2 .
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Challenges in designing a learning algorithm for graphs

For a permutation σ ∈ Sn, for G ∈ Fn×n(F = Rp feature space), we de�ne :
(σ ? G)σ(i1),σ(i2) = Gi1,i2 .

G1,G2 are isomorphic i� G1 = σ ? G2.

Equivariance :
A function f : Fn

2 → Fn is said to be equivariant if f (σ ? G) = σ ? f (G).

For the graph alignment problem, we used an equivariant GNN from
{0, 1}n×n to Fn.

Expressiveness : Azizian and Lelarge (2020)
FGNN has the best power of approximation among all architectures working
with tensors of order 2 (MGNN or LGNN).

34



Challenges in designing a learning algorithm for graphs

For a permutation σ ∈ Sn, for G ∈ Fn×n(F = Rp feature space), we de�ne :
(σ ? G)σ(i1),σ(i2) = Gi1,i2 .

G1,G2 are isomorphic i� G1 = σ ? G2.

Equivariance :
A function f : Fn

2 → Fn is said to be equivariant if f (σ ? G) = σ ? f (G).

For the graph alignment problem, we used an equivariant GNN from
{0, 1}n×n to Fn.

Expressiveness : Azizian and Lelarge (2020)
FGNN has the best power of approximation among all architectures working
with tensors of order 2 (MGNN or LGNN).

34



Challenges in designing a learning algorithm for graphs

For a permutation σ ∈ Sn, for G ∈ Fn×n(F = Rp feature space), we de�ne :
(σ ? G)σ(i1),σ(i2) = Gi1,i2 .

G1,G2 are isomorphic i� G1 = σ ? G2.

Equivariance :
A function f : Fn

2 → Fn is said to be equivariant if f (σ ? G) = σ ? f (G).

For the graph alignment problem, we used an equivariant GNN from
{0, 1}n×n to Fn.

Expressiveness : Azizian and Lelarge (2020)
FGNN has the best power of approximation among all architectures working
with tensors of order 2 (MGNN or LGNN).

34



Better expressive power with FGNN

(Maron et al., 2019) to propose the folklore graph layer (FGL) :

h`+1i→j = f0

(
h`i→j,

∑

k∈V
f1
(
h`i→k

)
f2
(
h`k→j

))
,

where f0, f1 and f2 are learnable functions.

For FGNNs, messages are associated with pairs of vertices as opposed to
MGNN where messages are associated with vertices.

FGNN : a FGNN is the composition of FGLs and a �nal invariant/equivariant
reduction layer from Fn

2
to F/Fn.
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Results on synthetic data

• Graphs : n = 50, density = 0.2
• Training set : 20000 samples
• Validation and Test sets : 1000 samples
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Generalization for regular graphs

Each line corresponds to a model trained at a given noise level and shows
its accuracy across all noise levels.
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Comparison FGNN vs BPAlign

Overlap as a function of the correlation s for correlated E-R with average
degree 3 (number of nodes : 200).
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Comparison FGNN vs GRAMPA

Overlap as a function of σ =
√

1−s
1−λ/n for correlated E-R with average degree

50 (number of nodes : 100). Fan et al. (2019)
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From theory to practice
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From theory to practice
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Conclusion

The Bitter Lesson by Rich Sutton

The biggest lesson that can be read from 70 years of AI research is that
general methods that leverage computation are ultimately the most
e�ective, and by a large margin.
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Thank You!
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