Graph matching: from fundamental limits to algorithms

Marc Lelarge (Inria and ENS Paris)

Alignment of graphs consists in finding a mapping between the nodes of two graphs which
preserves most of the edges. For two correlated Erdés—Rényi, we present information-theoretic
results in the sparse regime. We then propose an algorithm based on local comparisons and prove
theoretical guarantees. Finally, we show the empirical success of learning algorithms.
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Alignment of Graphs



Problem : alignment of graphs

From graph 1 (on the left), put indices on its vertices, perturb the graph by
adding and removing a few edges and remove indices to obtain graph 2 (on

the right).
Task : recover the indices on vertices of graph 2.



Green vertices are good predictions. Red vertices are errors (graph 2).



Green vertices are good predictions. Red vertices are errors (graph 1).



Here are the 'wrong’ matchings or cycles.



Superposing the 2 graphs : green edges in both, orange and blue edges in
graph 1 and 2 resp.




Matched edges.




Mismatched edges.




Green vertices are well paired vertices. Red vertices are errors.
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Figure 2: The phase diagram for exact recovery in the logarithmic degree regime, where ng = Alogn
for a fixed constant A > 0. The impossible and easy regime are given by p < min{l,1/A} and
p > max{/a, 1/A}, respectively. No polynomial-time algorithm is known to achieve exact recovery
in the red regime.
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Figure 2: The phase diagram for exact recovery in the logarithmic degree regime, where ng = Alogn
for a fixed constant A > 0. The impossible and easy regime are given by p < min{l,1/A} and

p > max{/a, 1/A}, respectively. No polynomial-time algorithm is known to achieve exact recovery
in the red regime.
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Figure 2: The phase diagram for exact recovery in the logarithmic degree regime, where ng = Alogn
for a fixed constant A > 0. The impossible and easy regime are given by p < min{l,1/A} and
p > max{/a, 1/A}, respectively. No polynomial-time algorithm is known to achieve exact recovery
in the red regime.
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Theoretical results




Correlated Erdos-Rényi (1)

Two graphs G and G’ with the same set of nodes [n] and with respectively

blue and red edges. The blue and red edges are obtained by sampling
uniformly at random :

e with probability As/n to get two-colored edges;

e with probability A(1 — s)/n to get a blue (monochromatic) edge;
e with probability A(1 — s)/n to get a red (monochromatic) edge;
e with probability 1 — A(2 —s)/n to get a non-edge,

where A > 0 and s € [0, 1] are fixed parameters when n will tend to infinity.

e @ @ O-eO
OO e
®

b C @
®) 1D

15



Correlated Erdos-Rényi (2)

We then relabel the vertices of the red graph G’ with an uniform
independent permutation 7* € S,, and we observe G and H := G’ .

The marginals G, H are Erd0s-Rényi random graphs with average degree \.

The goal is to estimate the latent vertex correspondence ™.
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Exact recovery of 7*

Dependence of joint distribution in e(G A G') :

Qn—A@—s»rmM”.

Mg:aqzeqa[ YOE

MAP estimator of * is the solution of the QAP problem:

arg ml_?x(A, nen’)
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Exact recovery of 7*

Dependence of joint distribution in e(G A G') :

Qn—A@—s»rmM”.

Mg:aqzeqa[ YOE

MAP estimator of * is the solution of the QAP problem:

arg ml_?x(A, nen’)

Only feasible when X\ = Q(log n) Cullina and Kiyavash (2017), Mao et al.
(2022) Ding et al. (2022), Ding and Du (2022).
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Exact recovery of 7*

Dependence of joint distribution in e(G A G') :

s(n — A2 —s)) 18"
A(1—5)? ] '

P(G=G,G =G) x [
MAP estimator of * is the solution of the QAP problem:
arg ml_?x(A, nen’)

Only feasible when X\ = Q(log n) Cullina and Kiyavash (2017), Mao et al.
(2022) Ding et al. (2022), Ding and Du (2022).

In the rest of this talk, we consider the sparse regime where the average
degree X is not scaling with n.
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Planted graph alignment

For any subset C C [n], the performance of any one-to-one estimator
g :C — [n]
. n 1
OV(7T ,O') = n Z13(i):7r*(,').
1eC
Note that the estimator & only consists in a partial matching. The error
fraction of & with the unknown permutation 7 is defined as
C]

. A 1 * A
err(n”,0) = p 218(,-)#77*(,-) = ov(m™,&).
ieC
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Planted graph alignment

For any subset C C [n], the performance of any one-to-one estimator
g :C — [n]

N 1
OV(7T ,O') = n Z 15 (i)=7 (i) -
ieC

Note that the estimator & only consists in a partial matching. The error
fraction of & with the unknown permutation 7 is defined as

. A 1 C ¥ A
err(n”,0) = p 218(,-)#77*(,-) = |n—| —ov(7™,5).

ieC
A sequence of injective estimators {Gn}n Is said to achieve

e Partial recovery if there exists some € > 0 such that
P(ov(m™,6) >€) — 1,
n— oo
e One-sided partial recovery if it achieves partial recovery and
P(err(7*,6) = 0(1)) 0
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A (local) algorithm

< ?
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A (local) algorithm
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A (local) algorithm
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A (local) algorithm
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A (local) algorithm
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From graphs to trees

Fori e V(G),u € V(H), look at the neighborhoods N; and N, at depth d :

o ifu=mn"(i), (N, Nu) ~ GW trees of offspring Poi(\), with intersection
of offspring Poi(As) (model P, 4);

o ifuzn"(i), (N;, M) ~independent GW trees of offspring Poi(\)
(model Py 4).

Hypothesis testing : Can we test P, 4 versus Po 47
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Computing the likelihood ratio

b2 1y (b ® (L.J (e Le

* Lo\ (L 'LB)
+ L,\ *—p/ u)

) 4. ..
P, 4(t,t")

For two trees of depth d, the likelihood ratio Ly4(t,t") := B ) verifies

cnc’
Ld(t, t/) — Z¢(k,c, C/) Z HLd 1(t ,),t /(,))
k=0 aES(kc i=1
o’ €S(R,c)

where ¢ and ¢’ are the number of children of the roots,
kR=c+c’

(R, c,c') = e x % and S(k, ¢) denotes the set of injective
mappings from [R] to [¢].
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Correlation detection in trees

One-sided tests : tests 75 : Xy x Xy — {0,1} such that
Po.d(Tg = 0) =1 —o0(1) and liminfg P, 4(74 = 1) > 0 (i.e. vanishing type |
error and non vanishing power).

Theorem
Let

KLd = KL(PLdHPo,d) = E1’d [|Og(l_d)] :

Then the following propositions are equivalent :

(i) There exists a one-sided test for deciding Pq 4 versus P, 4,

(if) lim KLy = 400 and As > 1,

d—=c0
(iif) with probability 1 — pext(\S) > 0, Ly diverges to +oco with rate

Q (exp (9(1) x (As)d)).
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One-sided partial graph alignement

Recall : estimator & : C — [n] is said to achieve

e Partial recovery if there exists some ¢ > 0 such that
P(ov(m™,6) >€) — 1,
n— oo

e One-sided partial recovery if it achieves partial recovery and
P(err(n*,6) = 0(1)) — 1.
n— oo

Theorem . . . o . .
For given (A, s), if one-sided correlation detection is feasible, then one-sided

partial alignment in the correlated Erdds-Réenyi model G(n, A/n,s) is
achieved in polynomial time by our algorithm.
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Results in the regime with constant mean degree

(2] As=
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Results in the regime with constant mean degree




Results in the regime with constant mean degree




Results in the regime with constant mean degree




Results in the regime with constant mean degree
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A learning algorithm




Learning the graph alignment problem with Siamese FGNNs

G, € {o,1}" M, F e Rrxb

E.El ¢ R™

G, € {o,1}" W, F, e R"*b

e The same FGNN is used for both graphs.
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Learning the graph alignment problem with Siamese FGNNs

G, € {o,1}" M, F e R™XP

E.E] € R™

G, € {o,1}" W, F, e R"*b

e The same FGNN is used for both graphs.

e We added a LAP solver to get a permutation from EEJ.
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Challenges in designing a learning algorithm for graphs

For a permutation o € S, for G € F"*"(IF = RP feature space), we define:
(0% G)o(ir), (i) = Giiy-

G1, G, are isomorphic iff Gy = o x G,.

34



Challenges in designing a learning algorithm for graphs

For a permutation o € S, for G € F"*"(IF = RP feature space), we define:
(0 % G)o(ir),o(iz) = Giiy-
G1, G, are isomorphic iff Gy = o x G,.

Equivariance :
A function f : F™ — F" is said to be equivariant if f(o « G) = o * f(G).

For the graph alignment problem, we used an equivariant GNN from
{0,1}"*" to F".
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Challenges in designing a learning algorithm for graphs

For a permutation o € S, for G € F"*"(IF = RP feature space), we define:
(0 % G)o(ir),o(iz) = Giiy-
G1, G, are isomorphic iff Gy = o x G,.

Equivariance :

A function f : F™ — F" is said to be equivariant if f(o « G) = o * f(G).
For the graph alignment problem, we used an equivariant GNN from
{0,1}"*" to F".

Expressiveness : Azizian and Lelarge (2020)
FGNN has the best power of approximation among all architectures working
with tensors of order 2 (MGNN or LGNN).
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Better expressive power with FGNN

(Maron et al.,, 2019) to propose the folklore graph layer (FGL) :
5=t (W A (0r) 5 (1))
keV
where fo, fi and f, are learnable functions.

For FGNNs, messages are associated with pairs of vertices as opposed to
MGNN where messages are associated with vertices.

FGNN : a FGNN is the composition of FGLs and a final invariant/equivariant
reduction layer from F" to F/F".
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Results on synthetic data

Erdés—Rényi graph model Regular graph model
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Noise level Noise level
—— This work «—  SDP (Peng et al., 2010)

LowRankAlign (Feizi et al., 2016) —<— GNN (Nowak et al., 2018)

e Graphs:n =50, density = 0.2
e Training set: 20000 samples

e Validation and Test sets : 1000 samples
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Generalization for regular graphs

model

022 021 02 019 018 017 016 0I5 014 013 012 011 01 009 008 007 006 005 004 003 002 001 00

Each line corresponds to a model trained at a given noise level and shows
Its accuracy across all noise levels.
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Comparison FGNN vs BPAlign

1.0
—— BP_200
——— GNN_200
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Overlap as a function of the correlation s for correlated E-R with average
degree 3 (number of nodes : 200).
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Comparison FGNN vs GRAMPA

Graphs with avg. degree 50.0 (quantile 10-90%)
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Overlap as a function of o = , /Q%S/n for correlated E-R with average degree

50 (number of nodes : 100). Fan et al. (2019)
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From theory to practice
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From theory to practice
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Graphs with avg. degree 20.0 (quantile 10-90%)
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Conclusion
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The Bitter Lesson by Rich Sutton

The biggest lesson that can be read from 70 years of Al research is that
general methods that leverage computation are ultimately the most
effective, and by a large margin.
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Thank You!
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