The stochastic blockmodel for clustering nodes in graphs and
hypergraphs

Catherine Matias (Sorbonne Université, Université Paris Cité, CNRS)

A popular way of extracting information from heterogeneous data is clustering. In the graphs
context, stochastic blockmodels (SBMs) were introduced in the early eighties and have flourished
in many directions. These models assume that nodes are clustered into groups and the connection
probabilities between nodes are driven by their groups memberships. Variants handling weighted
graphs and degree corrected versions have been developed among others. SBMs are widely used
for clustering nodes in graphs and may produce more general clusters than community detection
methods.

In this talk, I will present this class of models, an inference method based on variational
Expectation-Maximization algorithm and recent extensions to handle dynamic data as well as
higher-order interactions.
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Data: networks, their properties and beyond I

Some networks characteristics
» Potentially large number n of
interacting entities,

» Potentially sparse networks:
number of edges < O(n?),

» Scale-free property : Degree
distribution has a power law
P(D; =k)=ck™,(y > 0),

» Small world property: shortest path length is small on
average (less than 6),

» Transitivity /clustering property: is there a large amount of
triangles?



Data: networks, their properties and beyond 11

Some challenges

>

v

Go beyond these (local) descriptors and capture
higher-level structures, such as topological patterns,
cliques, nodes groups, etc,

Propose relevant models that will capture those structures
without any a priori information on which structures we
are looking for,

From static to dynamic models,

From pairwise to higher-order interactions,



Beware: Issues with sampling

The graph at stake is a sample (or to be sampled) from a
larger, not observed graph.

» Does the sampled graph have the same characteristics than
the larger unobserved one?

» How should we sample from the larger unobserved graph to
ensure good properties on the sample?

These are difficult questions on which very few is known.



Outline

Graphs clustering: different approaches



Graph clustering: why and how? 1

Why?

» Networks are intrinsically heterogeneous: need to account
for different nodes behaviours,

» Summarise network information through a higher-level
view (zoom-out the network),

» Some networks exhibit modularity: modules or
communities are groups of nodes with high number of
intra-connections and low number of inter-connections;

» Other structures might be of interest: hierarchical groups,
hubs, periphery nodes, homophilic/heterophilic structures,



Graph clustering: why and how? II

How?
Many methods, with different aims
» Searching for communities (or modules),

» Modularity-based approaches;

» Random walk algorithms;

» Spectral clustering;

» Latent space models by [Hoff et al.(2002)].

» Searching for groups, without any a priori on their
structure: Stochastic block models (SBMs).
SBMs search for groups of nodes with a similar
connectivity behaviour towards the other groups.



Model-based approaches for clustering

Let A = (A;j)1<i j<n denote the adjacency matrix of the graph.
Common principle of latent variable models

» for each node 7 there exists some latent random variable Z;
that drives the nodes interactions,

» More precisely, given the Z;’s, the random variables A;;’s
are independent,

» and the conditional distribution of A;; depends only on
Zi, L.

These approaches include
» Hoff et al.’s model

» the Stochastic block model.
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Stochastic block model (binary graphs)
fy ® ’Yoo
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Binary case (parametric model with 6 = (7, ))

n =10, Zsy = 1
Toe A =1,415=0

» K groups (=colors «ee).

> {Zz’}lgign i.i.d. vectors Zz = (Zz'1, Ceey Z@K) ~ ./\/l(l, 71'),
with 7w = (7, ..., 7x) groups proportions. Z; not observed
(latent).

» Observations: presence/absence of an edge {A4;;}1<i<j<n,

» Conditional on {Z;}’s, the r.v. A;; are independent
B(vz;z;)-



Stochastic block model (weighted graphs)
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Weighted case (parametric model with 6 = (7, v, ~(2))

n =10, Zs, = 1
Yoo A e R, A15 =0

» Latent variables: zdem

» Observations: 'weights’ A;; , where A;; = 0 or

Aij € R\ {0},

» Conditional on the {Z;}’s, the random variables A;; are
independent with distribution

nz.2,() =15y FCvy) + (1= )6()
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SBM classification vs community detection

Toy example

» Nodes classification induced by the model reflects a
common connectivity behaviour;

» Most clustering methods try to group nodes that belong to
the same module/community (called community detection)

» Toy example

N/

al >\/' ANANS

SBM clusters Community detection or SBM



SBM : particular cases and generalisations I

Particular case: Affiliation model
a ... f
y=1: -
B ... «
» When o > f =— community detection
» (alled planted partition when groups have same size

» When o < f = multi-partite structures (heterophily)



SBM : particular cases and generalisations I1

Some generalisations

» Graph setting:

>

vvyyvyy

>

>

Overlapping groups

[Latouche et al.(2011), Airoldi et al.(2008)] for binary
graphs;

SBM with covariates [Zanghi et al.(2010)];
Degree-corrected SBM [Karrer and Newman(2011)];
Missing edges [Barbillon et al.(2022)] ;

Latent block models (LBM), for array data or bipartite
graphs [Govaert and Nadif(2003)] and more general
multi-partite models [Bar-Hen et al.(2020)]

see GroBBM https://github.com/GrossSBM/ that
implements inference for many and more variants of SBM;
Nonparametric SBM (graphon);

» Dynamic SBMs [M. & Miele(2017), M. et al.(2018)];
» Hypergraph SBM [Brusa and M.(2022)];
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Overview of algorithms

Goal is MLE. Likelihood computation is untractable unless n is
small.

Parameter estimation

» em algorithm not feasible because latent variables are not
independent conditional on observed ones:
P({Z:}il{Aij}ij) # 11 P(Zil{Aij }is)
» Alternatives:
» Gibbs sampling
» Variational approximation to em.
» Ad-hoc methods: Composite likelihood or Moment methods
[Ambroise and M.(2012), Bickel et al.(2011)]; Degrees
[Channarond et al.(2012)];



Variational approximation principle I

Log-likelihood decomposition
LA(0):=1logP(A;0) =1logP(A,Z;0) — logP(Z|A;0) and for
any distribution Q on Z,

La(0) =Eqg(logP(A,Z;0)) + H(Q) + KL(Q|P(Z]A; 8))

em principle

> e-step: maximise the quantity Eq(logP(A, Z;0®)) + H(Q)
with respect to Q. This is equivalent to minimizing
KL(Q|P(Z|A; 01)) with respect to Q.

» m-step: keeping now Q fixed, maximize the quantity
Eq(loglP(A,Z;0)) + H(Q) with respect to 8 and update
the parameter value 811 to this maximiser. This is
equivalent to maximizing the conditional expectation

Eg(logP(A,Z;0)) w.r.t. 0.



Variational approximation principle 11

Variational em

» e-step: search for an optimal Q within a restricted class O,
e.g. class of factorized distr.

n

Qz)=]]ez), Q= argmin KL (QI|P(Z]A; 6))
1=1

» m-step: unchanged, :.e.
9U+1) = argmax, Eg- (log P(A, Z; 0))

» A consequence of L > 0 is the lower bound
La(0) > Eg(loglP(A,Z;0)) + H(Q)

So that the variational approximation consists in
maximizing a lower bound on the log-likelihood. why does it

make sense ?



Model selection

How do we choose the number of groups K7
Frequentist setting

» Maximal likelihood is not available (thus neither AIC or
BIC),

» ICL criterion is used
[Biernacki et al.(2000), Daudin et al.(2008)] (no
consistency result on that).

Bayesian setting

» MCMC approach to select number of LBM groups
[Wyse and Friel(2012)].

» Exact ICL requires greedy search optimization
[Come and Latouche(2015)]
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Dynamic interactions data

Types of data and their representation
One should distinguish between

» Long time relations (eg social relations, physical wiring of
routers, ...): graphs sequences

» Short time interactions (eg: pone call, physical encounter,
...): temporal networks or stream links

For a nice review, see [Holme(2015)].
Pictures that follow are from [Gaumont(2016)].



Graphs sequences

.3 — Exemple de série de graphes sur trois intervalles de temps.

FIGURE

Remarks
» In practice, there could be small variations in the
individuals present at each time step,

» These data are sometimes obtained through aggregation

» possible loss of information
» problem of choosing the time window for aggregation.



Temporal networks

@
=4

T=3.5 T=3.6 T

FIGURE 1.5 — Graphe temporel avec des ajouts de lien représentés en traits
épais verts et des suppressions de lien représentées par des liens pointillés
rouges.

Remarks
» Again, variations in node presence/absence is possible,

» Here, there is no loss of information.

» Ideal setup in the sense that most of the time, we do not
have all this knowledge.



Links streams [Latapy et al.(2018)|

: E} = ) | > %)}} ,
d W
. I S F.

5 1 2 3 4 5 6 5 & ¢ 1oTime
Remarks

» Here, there is no underlying graph!

» One could add in the data (and in its visualisation) the info
that one individual is not present during some time periods,

» Again, no loss of information.
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Dynsbm: a dynamic stochastic blockmodel

Model [M. & Miele(2017)]

» We simply combine a latent Markov chain with weighted
SBMs;

» Our graphs may be directed or undirected, binary or
weighted; some individuals can appear or disappear;

» Groups and model parameters may change through time;

» Careful discussion on identifiability conditions on the
model.

Inference

» VEM algorithm to infer the nodes groups across time and
the model parameters;

» Model selection criterion (ICL type) to select for the
number of groups.



Dynamics: Markov chain on latent groups

Latent Markov chain
» Across individuals: (Z;)1<i<n iid,

» Across time: Each Z; = (Z})1<i<7 is a Markov chain on

{1,...,@Q} with transition ™ = (¢ )1<4.¢<@ and initial
stationary distribution o = (g, ..., Q).
T 2N 2t | 2 | ——
7T Z;il T Zé T Z§+1 7T
7T Z]tvil 7T Z;\; 7T Z]fv+1 7T
Pt Pt ptH1
yit—1 Yt yt+1

Goal

Infer the parameter 6 = (m,3,7), recover the clusters {Z!},; ;
and follow their evolution through time.



Ecological networks [Miele & M.(2017)] 1

AT A i dataset[Mersch et al.(2013)]
T=10, N=152

Ty
T e

g s groups 1 and 2.
i<

0000000

Selection of 3 social groups.

Low turnover : 47% of ants do
not switch group.




Ecological networks [Miele & M.(2017)] 11

aH group1-2

Group 2: a community.

Group 3: contacts with all ants from
any groups.

Group 1: avoid contacts with group 2.

Perfect match with the three
functional category groups: nurses,
foragers and cleaners

nurses foragers cleaners
1 42 0 0
2 0 29 2
3 4 1 29

(75% of ants, staying at least 8/10 steps in same group)
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Longitudinal interaction networks = Stream links view




Longitudinal interaction networks = point process view

— R R — 4R
I ] NI _ - —/
0 t1 to ts tg s

[] interactions between individuals i, j
() interactions between individuals ¢, k

<> interactions between individuals k, [

» We observe a marked point process: the mark is a pair of
individuals (¢, j) that interact at time t¢.

» Goal: cluster the individuals ¢ (not the processes Nj; !)



ppsbm: a dynamic point process SBM
Model characteristics [M. et al.(2018)]

» Pointwise interactions with no duration only; Individuals
are always present;

» Groups are constant through time;

» Conditional on the latent groups Z;, Z;, the point process
N;; 1s a non-homogeneous point process with
(nonparametric) intensity ¢ — aZi%i (t).

» Recover latent groups Z = (41, ..., Z,) and estimate the
intensities per groups pairs {al%)()}1<,1<o with VEM

Inference characteristics

» Procedure is semi-parametric: intensities may either be
estimated through histograms (with adaptive selection of
the partition), or kernels.

» ICL to select the number of groups Q).



London Santander cycles

Data

» (Cycles journeys from the Santander cycles hiring stations:
departure station, arrival station, time of journey start.

» 1st dataset from Wed. February 1st, 2012, with n = 415
stations (=individuals), and M = 17 631 journeys (time
points)

» 2nd dataset from Thursday February 2nd, 2012: n = 417
stations, M = 16 333 journeys.

Model selection of the number of groups )
ICL selects 6 groups for both days.



London Santander cycles: geographical projection of the
clusters
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The smallest cluster x I

» Contains only 2 bike stations, located at Waterloo and
King’s Cross

» among the stations with highest activities

10- ot e Barplots of outgoing
= g o (Ni.(-)) and incoming
Ep 5w (N.;(+)) processes from
- ” Ba the 2 stations ¢ in the
o - ol bt . |||I....|.I| III..- smallest cluster: volumes

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

STR 595 &% m;i nie BES 928 AR o o ens °“°;Im‘“e>' s ()f COIlIleCtiOHS to all Other
Waterloo 3 Waterloo 3 stations during day 1.
150 -
75-
100-

of ’outgoing’ stations in
the morning and ’'ingoing’
SRR ETRTRETEEETY stations in the evening.

Time Time

Outgoing counts
Incoming counts
g

|‘ The cluster is composed
[ 1 1. -.II ———




The smallest cluster x II

» Stations close to Victoria and Liverpool Street stations also
have high activity but not the same temporal profile so
they cluster differently,

» This cluster x is due to a specific temporal profile, that
would not be captured through a snapshot approach.

» The cluster has strong connections with cluster ¢ that
corresponds to business city center.



Outline

Higher order interactions
Hypergraphs: what it is and why you may need it
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Graphs vs Hypergraphs

Hypergraphs represent higher-order interactions, e.g.
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(a) Graph representation (b) Hypergraph representation



The need for modelling higher-order interactions

Why higher-order interactions?

>

>
>

Social networks: triadic and larger groups (as early as Simmel,
1950)

Scientific co-authorship,

Interactions between more than two species in ecological
systems,

Higher-order interactions between neurons in brain
networks,

Metabolites in chemical reactions,

etc

These interactions CAN NOT be represented by a graph.



Simple hypergraphs

Definition

A (simple) hypergraph H = (V, €) is defined as a set of nodes
VY # () and a set of hyperedges €. Each hyperedge is a
non-empty collection of m distinct nodes (2 < m < M) taking
part within an interaction.

» Hypergraphs naturally include the entity of graphs, by
simply considering hyperedges of size m = 2;

» A hypergraph can contain a size-3 hyperedge |a, b, ¢|
without any requirement on the existence of the size-2
hyperedges |a, b], |a, c|, and [b, c|.



HyperSBM formulation

>

>

H=VE), withV =1{1,...,n} nodes and &£ hyperedges;

For each 2 < m < M, let
V) = iy i) i, i €V and iy # L # i b

set of unordered node tuples of size m;

Observations: At each {i1,...,in} € V™) we observe
indicator variable Y;, ;= 1{{i1,...,im} € E};

Latent clusters: Z,...,Z, iid in {1,...,Q} with
mq = P(Z; = q);

Conditional independence assumption:
{Yir,im Yirimyevem [{ 21, ..., Zn } are independent with

Yir,iml{Z1 = @1+, Zin = g} ~ Bern(B{™. . ).

Qiq 5 9im



Computational complexity - and considerations over the
choice of M

>

>

Focusing on single hypergraphs has a high price: we need
to explore all the (TZ) tuples of nodes for all 2 < m < M;

Our algorithm has a complexity of O(n(,}) QM), which is
large;

Current modularity approaches avoid this issue by working
with multisets-hypergraphs, because there the summations
over multisets of nodes >, ~ ; factorize into m
independent sums (no constraint that the nodes be
different), and this further simplifies the expression of the

modularity;
Again, this is inappropriate on some datasets;

As a consequence: we recommend to use a reasonable value
of M: indeed M is not necessarily the largest observed
hyperedge size (e.g. co-authorship dataset);



Co-authorship dataset I

Dataset description

» Available at http://vlado.fmf.uni-1j.si/pub/
networks/data/2mode/Sandi/Sandi.htm

» Bipartite author/article graph transformed into hypergraph
of authors where hyperedges link the authors of a same
paper;

» We choose M = 4 and consider the induced largest
connected component: 79 authors and 76 hyperedges
(68.5% of which have size 2, while 29% have size 3 and
2.5% have size 4).



Co-authorship dataset 11

Analysis through HyperSBM
» ICL selects Q = 2 groups, the first has only 8 authors;

» Our first group is made of authors (among) the most
collaborative ones, which are also (among) the most prolific
ones.

» None of these groups is a community (the first co-publishes
with all, the second has low intra-group connectivity).

Comparison with hypergraph spectral clustering (HSC)
» HSC with (Q = 2 gives a group of size 24 and one of size 55

» These groups are neither characterized by the number of
co-authors nor their degrees in the bipartite graph

» Very different from our results because: spectral clustering
tends to: 1) extract communities ; ii) favor groups of similar
size.
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Conclusions

» Stochastic Blockmodels are powerful tools for clustering
entities in interaction

» Parameter estimation and nodes clustering may be
performed through VEM algorithm

» ICL criterion is used to select the number of groups

» Try the different softwares !

Any questions 7
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