Learning distances for attributed graphs with optimal transport

Pierre Borgnat (ENS Lyon)

The obtention of good distances (or of metric) between objects is an important step for many
Machine Learning methods. For structured data such as graphs, Optimal Transport (OT) has
received much attention both from the ML community and from the Graph Signal Processing per-
spective. This especially allowed to address graph classification or graph transfer learning tasks.
From our work, I will discuss two novel propositions that combine graphs (structure) and signals
(attributes) using Optimal Transport for two situations: i) a new OT-based distance, called Diffu-
sion Wasserstein distance, that generalizes Wasserstein distance to attributed graphs thanks to the
application of a graph filter (e.g. heat diffusion) combining structural and feature information, and
that both provides a significant performance boost when solving graph domain adaptation tasks;
ii) a Metric Learning algorithm for OT-based distance between attributed graphs. Many Metric
Learning algorithms have been developed in recent years, yet none for attributed graphs despite
the interest of learning distances for better discriminating between graphs. We designed a novel
Simple Graph Metric Learning (SGML) model, built from OT yet scalable and with few trainable
parameters, that allows us to learn an appropriate metric from a set of labeled (attributed) graphs,
so as to improve classification procedures.
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Graphs: useful structures for data processing

Social Networks
Sensors’ data 5
Transportations
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communications,..

¢ Chemistry
* Physics

* 2D images

3D Points clouds

* Other geometric

and/or irregular shapes

+ ‘Source: Michael Edwards and Jht Graph based
CORR, abs/1609.08965, 2016
1 2 3 4 5 6
A, e, 7
\ 2 2o %o
«7 ) N o A e A A s B ]
P (Y i@ ! —TT P,
———o — A~ e o N~ T e <o
7 S —
v b / ~ X
11 12
A 22 N
v L «XE
Al LA
fal A

Source: Yunsheng Bai, Hao Ding, Yang Qiao, Agustin Marinovic, Ken Gu, Ting Chen,Yizhou Sun, and Wei Wang.
Unsupervised inductive whole-graph embedding by preserving graph proximity.arXiv preprint arXiv:1904.01098,
2019.



Setting: Attributed Graphs

* In the general case, nodes and/or edges can carry information:

< Edges = existence of some relationship
* Adjacency matrix

ul u2 us3 U4

ur (0 05 0 1
u2 0.5 O 1 0
uz | 0 1 0 05

< Nodes = Attributes, or Features / Signals

G=(V,E,X)=(A,X) wus\1 0 05 0
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Many Machine Learning tasks for Data on Graphs

Supervised Tasks
* Learn to classify Nodes

Blue labels
Etiquette bleue

Etiquette rouge

Red labels \

Quelle est
létiquette ?

Which label ?

* Learn to classify Graphs

Blue labels
Ethuette bleue Which label ?

Quelle est
Iy enquette ?

s
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Ethuette rouge
Red labels



Many Machine Learning tasks for Data on Graphs

Unsupervised Tasks

* Learn to find clusters (or modules, * Learn to cluster collection of graphs
communities,...)

How to separate clusters ?

Cm‘ere de séparation ?

How to separate clusters ? D—f (&)
Critere de séparation ?
\
| ;
\

* Note: more general features -> small-world, scale-free, hubs, higher-order interactions...




Many Machine Learning tasks for Data on Graphs

Representation of graphs : Embeddings

* For Visualisations or low-dim. embeddings * For high-dimensional embeddings

(Laplacian Maps, LLE, ForceAtlas, t-SNE,

UMAP....)
- ENC(u)
/\ o oZy
% encode nodes 2
~\_ /\
ENC(v)
original network embedding space

From [Tremblay & Borgnat, 2014] From [Hamilton., “Graph Representation Learning®, 2020]



Low Level task: (Graphs) Representation Learning

* Representation Learning = discover, or learn, adequate

representations for studied data so as to extract information
* Machine Learning in one sentence: build a map from data x to decision y t
o Output Output M“Z::ﬁ;"m
y=Fx) ; ; ;
Additional
* Machine Learning in the good all times owp | | MpmpEfon| | | Nepuelon (e e
hand-crafted using domain knowledge ? ? T f“}““”
o — Of o
F = F ecision ° J’features(x) i o _— Simple
features.
learnt from data pros features
A A A A
* Machine Learning with Representation Learning / Deep Learning
o _ or or o _ or Cr o Tnput Tnput Tnput Input
F = F gecision © 7 features / F= 7 decision ° ‘fluycr d®° ""fluycr 1
Alllearnt from data in multiple layers Rale-based i i

[From Pierre Vandergheynst’ talk, 2021] From [Goodfellow et al., “Deep Learning®, 2016]



Low Level task: Graphs Representation Learning

* For Graphs, Representation learning can be summarised as:

% For Collection of Graphs “* For Nodes in a Graph

—0.99
0.1 —O 05 .
2 z —_ ( 4) / (001)
—0.

0.99
\ ) (001)
< For graphs: often one will
agglomerate Nodes representations

* Combine a model of Classification & one of Representation
* Define a task, a dataset, learn & see

* e.g.: the powerful Graph Neural Networks can do that...



Low Level task: Similarities or distances for Graphs

Some Associated Difficulties

* Node-level: local inhomogeneities in structure => hard to compare two nodes

A a0

m e O\?\o

* Graph-level: possible isomorphism => hard to compare (even to find equality of) two graphs
lo\ugfus = uzo\g\f

* Attributed Graphs => how to efficiently combine structure and attributes ?

L]
Ll

What to do ?




A different Low Level approach:
(Dis)-Similarity or Distance-based methods for graphs

* Instead of finding a full representation space, focus on comparing graphs

* Advantages: think of the kernel trick! d(x,x’) can be put in many algorithms
* SVM still have good (better) performance (than representation methods)
* k-NN are still efficient / scalable approaches (no re-training)

* Disadvantages:
* Direct comparisons of Graphs is hard / computationally challenging

* e.g.: GED (Graph Edit Distance) is NP-hard (or use approximations)



Optimal Transport: a generic tool to probe
the geometry of probability measures

Optimal Transport: an approach to compute a distance between 2 distributions, while
finding the optimal coupling (or transport plan) between them

Put forward in Data Science/Processing & ML since...

* since ~2010 (at least) ; since ~2000 in image processing (Earth Mover Distance); well before
in mathematics (cf. Villani, 2003); in the 70’s for the Mallows distance in statistics,...

* (see my completely ignored ICASSP paper of 2012: “Using Surrogates and Optimal Transport for Synthesis of Stationary
Multivariate Series [...]”) (Title way too long!)

cf. “Computational Optimal Transport” (G. Peyré & M. Cuturi ), 2019
https:/arxiv.or 1803. A%
cf. Cuturi & Salomon "A primer on Optimal Transport”, NIPS 2017 Tutorial

h : imaltransport.github.io/sli (and other resources)



Optimal Transport: a generic tool to probe
the geometry of probability measures
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* from Cuturi & Salomon "A primer on Optimal Transport”, NIPS 2017 Tutorial



Optimal Transport for distributions

* from “Computational Optimal Transport” (G. Peyré & M. Cuturi ), 2019

h ://arxiv.or 1801. v

N r

One solution:

- Problem of Monge : « Mémoire sur la théorie des
w déblais et des remblais », 1776

With relaxation of

ﬂ Kantorovich




Optimal Transport for distributions

« Optimal Transport: Consider two finite sets X = {xi}l.fll e R and X’ and two
distributions on these ;1 = 2 a0 and v = 2 b,oy, with
xeX , x/ex’
a; >0, b, >Oand2a =1, Zb =1
i=1 i=1

* Given a cost function ¢ : R? X RY — R, one builds the 2-Wasserstein distance 7, as:
1

2
WH(u,v) = 1nf (Z 7; (X, XJ) )
v il
where I1, , is the set of joint distributions on X X X’
whose marginals are the distributions y = Z m(-,x) and v = Z (X, )

x;eX’ x;,eX



Optimal Transport for Graphs

* For Graphs: one has to Associate a distribution to a graph
- A first solution: rely on the the Weisfeiler-Lehman test

- cf. [Togninalli et al., “Wasserstein Weisfeiler-Lehman graph kernels“ NeurIPS 2019]

© 69
© 00 000
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* A 2nd solution: Comparison through probabilistic models of graph signals

- ['Graph Optimal Transport”, H. Maretic et al. NeuRIPS 2019]
-fora graph & with Laplacian L, one considers: x~vY=N0,L
- then: compute the 2-Wasserstein distance between Gaussian signals

- allows graph alignment, gives a structurally-meaningful graph distance,...



Optimal Transport for Geaphs-or Attributed Graphs

* A third solution: The Gromov-Wasserstein distance
- [Mémoli, Found. Comp. Math. 2011; Peyré, Cuturi, Solomon, ICML 2016]
- structures are compared through their pairwise distances

- cf. also N. Courty, R. Flamary, T. Vayer [PhD 2020]

* One can then combine Attributes and Gromov-Wasserstein characterisation of graphs

“Fused Gromov-Wasserstein distance”[Vayer et al., ICML 2019




OT-based methods for Attributed Graphs

Some Recent examples from our works

®* How to combine Structures and Attributes to define a distance, then solve some Domain

Adaptation problem ? Our proposition : Graph Diffusion Wasserstein Distance
[A. Barbe, M. Sebban, P. Gongalves, P. Borgnat, R. Gribonval, T. Vayer, ECML-PKDD 2020 ; ICTAI 2021 ; GRETSI 2019]

®* How to learn distances between Attributed Graphs ?

Our contribution: Scalable Metric Learning for Graphs
[Y. Kaloga, P. Borgnat, A. Habrard, LoG 2022]

Small distance

Small distance f ‘,'

RV &

Large distance



Graph Diffusion Wasserstein Distances
& Application to Domain Adaptation for Graphs

From Amélie Barbe PhD thesis (12/2021) ; ECML-PKDD 2020 ; ICTAI (2021) ; GRETSI (2019)

Joint work with Marc Sebban (LabHC; Saint-Etienne) ; Rémi Gribonval, Paulo Gongalves, and
Titouan Vayer (LIP, Inria, ENS de Lyon)
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Optimal Transport for Attributed Graphs

* A different way to combine Attributes and Structure of Graphs is to begin first by
processing the Attributes according to the Structure of the graph

=> This is exactly what Graph Signal Processing is studying since ~2010
see from [Shuman et al., SP Mag 2013] to [Ortega, CUP, 2022]
» More precisely, given a signal x and a graph &:
 Adjacency matrix A, degree matrix D = diag(A - 1), LaplacianL =D — A
* The “processing” (filtering) of x through & has the form: X = f(L) - x
« Example of useful filter: the heat diffusion
* A good model of graph signals [Thanou, Dong, Kressner, Frossard, 2017]

 Characterizes some structure of the graphs, e.g. [Ricaud, Borgnat, et al. CR Phys., 2019]



Graph Signal Processing: Heat Diffusion

Heat diffuii n, T=10 Heat diffu?n, T=25
't ; 243 y

Heat diffusion, T=100

from [Ricaud, Borgnat, Tremblay, Gongalves, Vandergheynst. CR Phys., 2019]

“Fourier could be a data scientists: from Graph Fourier transform to signal processing on graphs”



Graph Signal Processing: distance from Heat Diffusion

* from [Hammond, Gur, Johnson, GlobalSIP 2013] “GRAPH DIFFUSION DISTANCE: A DIFFERENCE MEASURE
FOR WEIGHTED GRAPHS BASED ON THE GRAPH LAPLACIAN EXPONENTIAL KERNEL"

* They define a Diffusion distance between graphs having the same number of nodes

(A1, Agit) =Y ((exp(—tL1))i; — (exp(—tLa))i;)?

2%}

= ||exp(—tL1) — exp(—tLz)||% )

0.1

:;7dgdd(A1, Ag) = IMaxXg \/S(Al, AQ; t).

00 . 10 0.16 0.26

(c) (@

Fig. 1. (a) Barbell graph, and single-edge perturbations, for N = 5,
K = 2. (b) Plot of ratio dgaa(G™?, Gp?) /dgaa(GN'2, GN:2) vs
N. (c) Plot of £(t) for A1 = G2, Ay = G2, red dot indicates
maximum, corresponding to dgqa(A1, A2)?. (d) Values of normal-
ized edge deletion perturbation, on edges of G**2.



Optimal Transport and Graph Signal Processing for Attributed Graphs

* We can leverage (combine) all that: OptTr ; Diff distance ; GSP (process signals by L)

* We generalize the previous ideas, and we consider:
« two graphs of sizes n and m and their associated Laplacians: L* and L/
« the features of these source and target graphs: X € R™"; Y € R™"
» a cost function between features: M(X, Y) = [d(x;, y;)] for any X € R™"Y € R™"

« the diffused features: X = exp(—7°L®) - X and Y = exp(—7'L/) - Y

exp(—7L%).
S ———— X N
N iy Lo e
Y ' DWA(US, Ut)

Xt

%’ exp(—7fLY)- e
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The Diffusion Wasserstein Distances for Attributed Graphs

* Then, we define it as:

i DWE(p,v | 7°,7) = min (v, MP).

~v€Il(a,b)
0.14 1 7 — 7
* Theoretically, it has good properties: Towf || N
* itis a distance § T
é 0111 |ower asymptotic bounzd of DW3
* we have bounds for small and large 7 Eow
LN . * 0.09 1 | | | N
* it’s efficient to be computed, more than Fused GW |
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The Diffusion Wasserstein Distances for Attributed Graphs
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(a) Distributions before alignment.  (b) Distributions after alignment.

* Experimentally, it works well: the task for comparison is Domain Adaptation

* by itself a cheap way for DA on Attr. Graphs

* can be combined with Fused GW, for an even better

DifFused GW distance, which has best perf. ! -.;:-n Xs
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The Diffusion Wasserstein Distances for Attributed Graphs

Dy (1,

vt =
v€l(a,b)

min (v, MP).

Experimeq)tally, it works well:(b)the task for comparison is Domain Adaptation

— oW

00 -25 -50 -75
[n:1es: target features SNR

[M)ae 6 3 0 -3 -6 -9 -12

f 1 2 3 4 6

a waw) 0.4 0.6 0.6 0.6 0.7 0.7 0.6
«a (rew) 0.4 0.6 0.6 0.7 0.7 0.6 0.7

a rew) 0.63 0.63 0.45 0.39 0.54
a (oraw) 0.64 0.56 0.66 0.62 0.46

(d)

(©)
b
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from [Barbe et al.,

ECML-PKDD 2020]

exp(—7fLY)-
e g

Y, (o)

M(a,b
nenh) DWE(US, U)




Original graphs + Features W barycenter

The Diffusion Wasserstein Distances for Attributed Graphs, in action

* How to set diffusion parameters 7 ? For unsupervised DA ! :iq iy :2; * o t&x s
B " Es % %
* Use an ER random graph and features as Wasserstein barycenter ¢ « 1’ % t e Z’ % il ! 17 %
as an impostor: @ o @ oo
) Y ee © S —Be o
1 o8, '... o"‘. = '...
XO:argmin{f (W(XS,X)+W(Xt,X))}. S . ~‘ ‘.. . \.
XeRrixr 2 .. o® .o o .o e
L ) L ) L )
[ S— S | [ — ' ] [ — |
. i imi . ° = o o ° % o 0 * %N - 3
And a triplet loss to be optimized for z: L TS i TR
® ® ®
(10)

j- T = argmin {L(7)}, with
| >0

I
|L(r) = DW,y(G°, G" | 7)— (DW,(G7,G° | 7) + DU, (G", G° | 7)) -
(11)

. Avoid the use of Circular Validation for DA

“uy ",. T
AR T exp(—7°L®)-
e TP g ]
e [10)

N e
> ST

“&. Xt —————— Xt

from [Barbe et al.,

DWE(US, Ut)
ICTAI 2021]




The lefusmn Wasserstein Distances f()r Attributed Graphs, in action

_ | 7" = argmin {L£(7)}, with (10)
L DWE(p,v | 75, 7Y) = min (v, MP). ; =

o) oA L(r) = DUy(G*,G" | 7)— (DWy(G°,G° | 7) + Dy (6,G° | 7).

(11)

u P ~€Il(a,b)

 Impostor + Triplet loss = set the diffusion parameter 7!

* No Circular Validation => more stability, better perf. ™| ° o L
DWL @ oo o |—E
OT_LAPLACE O@QD—{D
* Take-Home message : GSP + OT works very well . T
 or even : GSP + ML rocks for graphs learning! ow ] ol —op—T o de
i DW_CV ood—[:}—i o o ®
Wiy ol a0 T o0
BT el
N D & -
(o) . iy
'N . M : DW,‘;(US~, Ut) 02 03 0.4 05 06 07 08 0.9 10
_:_:; 3“: g;.' exp(_TtLt). / Accuracy
‘ﬁ. Xt———X! from [Barbe et al., Fig. 6: Median, quartile and decile accuracy of various OT
ICTAI 2021] methods on the task of transferring the labels of G° to G*.



| Another take at the low-level task: compute distances

* Why? Distances are at the input of many (many!) methods
“Real” distances between graphs are often hard to compute ( G. Edit Distance),
or can ignore some aspects (e.g. spectral distances),
and usually forget about attributes

* What for? Parametric distances allow for Metric Learning

* cf. Tutorial on Metric Learning (A. Bellet), 2013 & https:/arxiv.org/abs/1306.6709




‘Metric Learning for Attributed Graphs = Leveraging the structure

A Review of some existing works to compare attributed graphs

* The main objective is to jointly code for topologies & attributes
* Some Existing Solutions :
% In ML: low scalability when methods rely of GED (Graph Edit Distance)
% In ML with kernels: usually nonparametric (exception multiple kernel learning)

% in ML: the fruitful change of point-of-view: use Optimal Transport between distributions
representing graphs so as to compare graphs+ attributes => Fused Gromov-Wasserstein

% In GSP, as quoted, works using OT where signals on G allows comparisons / alignements of
graphs

% In GSP, notions of distances between graphs

% In ML+GSP : ways to propose distances between Attributed Graphs, and parametric them



A Simple Way to Learn Metrics
Between Attributed Graphs

From Yacouba Kaloga PhD thesis (12/2021) ; LoG 2022 ; arXiv:2209.12727 (2022)

Joint work with Amaury Habrard (LabHC; Saint-Etienne)
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Optimal Transport for Geaphs-or Attributed Graphs

* One can combine Attributes and Gromov-Wasserstein characterisation of graphs

“Fused Gromov-Wasserstein distance” [Vayer et al., ICML 2019

g1

k
|C1(Z k Cz ],
Go

d(a;,b;

* If you have followed up to now: The Diffusion Wasserstein distance

[Barbe et al., ECML 2020; ICTAI 2021]
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Optimal Transport for Attributed Graphs, with Metric Learning

* Our proposition: 1) parametrize the (graphs-+attributes) representation through a GCN

2) compute distance between them by optimal transport

Byeody -

SGCN Optimal oT
’I‘ransport d (g g )
O;A;k//) g/ Y/ '
Features Extracted Umform
Features Distribution

Small o i} =
3) (semi-)supervised training of the distance usnnngj GRS %

positive (close) and negative (far) sets of examples O\/O Cv



Optimal Transport for Attributed Graphs, with Metric Learning
=>The Simple (& Scalable) Graph Metric Learning model

Our constraints :
Be able to deal with graphs of different sizes, attributes of various natures
Keep a reasonable number of parameters (to avoid overfitting)

Keep the computational load acceptable, as the training will call the distance
function many times

Focus on the scalability of the method

Focus on a method which has not be trained anew if one is given new instances of
data

Motivation : frugal Machine Learning!



1) Trainable Learning and Graphs: Graph Neural Networks

* From ~2015 on: an ever growing interest to adapt Deep Learning to Graph Structures

weighted average of

g(x)lzlyer 0 — 0( W(l)x+b(l)) input + bias/offset

non-linear activation function

then Stack them => multilayer (or deep) neural network

use Convolutions for W => CNN

* For Graphs: One needs to combine information from irregular neighbourhoods.

* Thanks to Graph Signal Processing, one knows about convolutions in graphs.

[See Shuman et al., SP Mag 2013]



1) Trainable Learning and Graphs: Graph Neural Networks

* Convolutional GNNs: convolutions are defined in the Spectral domain (L = Laplacian)

W = Pe(L) Special form, polynomial of shift operator

Fien node(x) = O-(wiTw + bl) w; = [P@<L)]z

same parameters for all nodes [Defferrard et al., 2016]

A . GCN [Kipf & Welling, 2017]
* What we will not do: propose a new GNN architecture

* Many exist, with various limits associated to GNNs /GCNs, and well studied
S. Luan et al., “Break the ceiling: Stronger multi-scale deep graph convolutional networks.” NeurIPS 2019
K. Xu et al. “How powerful are Graph Neural Networks », ICLR 2019
A. Loukas et al. “What graph neural networks cannot learn: deepth vs. width ICLR 2020

Z. We et al. "A comprehensive survey on graph neural networks.” IEEE Trans. NNL 2020

and still counting...



Learning and Graphs: Graph Neural Networks

* GNN = Gives a trend to powerful methods:

* Whatever the flavor (filters ; attention-based ; message passing)

* Strong applications :
* Drug Discovery ChemProp [Cell 2020]; *Alphafold2 and Transformers use graphs
* Drug repurposing [see S. Chepuri, 2020: Dr-COVID: graph neural networks for SARS-CoV-2 drug
repurposing]

* OpenCatalyst: discover new molecules that are catalysts for Chemistry (e.g., for fuel conversion)

* Some smart (and nice) people working on the subject

* Insights from Graph Signal Processing are useful for GCN/GNN/...



1) Trainable Learning and Graphs: Graph Neural Networks

* What we will do: think of GNNs/GCNs as a way to obtain a Graph Representation
 Extract Features for Attributed Graphs: we use Simple GCN [2019]

- Amounts to Graph Filtering (Feature Propagation) then standard Non-Linear Activation fct

[Initial attributes X € R™?; Modified Adjacency matrix: A = A +1,
|
'Features Y € R™ are generated as

Y = ReLU(A" X ©)

~—

 Trainable Parameters: © € R?” with hyper-parameters p and r

<SB!
. Graph Representation: 9y(¢,X) = Z — Oy (i
n
i=1



2) Optimal Transport with a Reduced Computational Load

* For Optimal Transport: Use the Sliced methods

- [N. Bonneel et al., “Sliced and Radon Wasserstein barycenters of measures”, JMIV 2015]

- One projects the distribution (in R”) onto various 1-D directions 8, then average

421 Po#t(A#u1) 29 2929 29

e Po#v y? AR ys Figure: T. Vayer

* The main advantage is that 1D optimal transport is easily computed by sorting

* Property: one can show that it is a metric (excepted specific conditions)



2) Optimal Transport with a Reduced Computational Load
WH(u,v) = 1nf (Z 7 jo(X;, x)z)

!

* Thee candidates for fast OT:

- Sliced Wasserstein Distance 7", with directions sampled at random, and SW »(u,v)* = J W H(ug, yg)zdé
So-1

- Projected Sliced Wasserstein Distance % ,, when n = n’, computing the distance in the original domain
n,n'

[Rowland et al. AISTATS 2019] PUW Ay, v)* = J ﬂfj’-* llx; — xf I5d6
s

ij=1
- Our proposition: Restricted Projected Sliced-Wasserstein 257 ,: One limits the integral to a spanning set fo vectors,
n,n

P >
hence:  RPW (P ==Y ¥ 2% Ix - ¥l

1
conveniently chosen as the canonical basis vectors {u;}”
Pisiijz=

k=1’

* Property: RPW , is a metric.

dF77G, G = RPW (De(%,X), De(¥, X))




3) Loss for training the distance:
the Nearest Class Cloud Metric Learning

Objective function ?
Go back to tutorial of Bellet et al.
Here: a variant of NCA,

=> Nearest Class Cloud Metric Learning

Designed to boost k-NN classification

(remind : no retraining is what we look for)

PO (elg) =

giEGx

Attributed graph label

N

exp (Z Giec. —dgY(G,Gi)?
E(Gi)=e

Seeeexd (L gee. —43V (G, gi)2)
E(G;)=¢’

Probability for the graphs G to have label e

I

max Z log p®

G;€Gy

eeclL

£(G:)|9:)

Mazimize the probability for each graph to have is own label



Some elements on this Simple Graph Metric Learning model

* Training of the SGML model in a nutshell:

Algorithm 1 SGML: High-level algorithm to build d. V2.

Require: A dataset of attributed graphs G and their labeling function £.
for each epoch e € {1,...,E} do
Build a partition: Uy, By = G such that By, N By = ).
for each batch By, do
for each graph pair (G,G’) € By x By do
Compute distance dSPWZ (G,G") (Eq. 9)

Compute —fgk (Eq. (11)) and apply an iteration of Adam descent algorithm.

return all pairwise distance dgz)WQ inG.

* Hyper-Parameters: p and r for the SimpleGCN
* Complexity of the method:

* Time complexity in O(| G | A(p? + firp) + | G| p%ilog i)

* Space complexity in O(7i%p)



SGML model

Numerical Experiments

. Graph Datasets Datasets ~ BZR COX2 PROTEINS ENZYMES MUTAG NCIl IMDB-B IMDB-M CUNEIFORM

#Graphs 405 467

1113

600 188

4110 1000

1500

267

* Task of Supervised Classification
- either k-NN classifier

- or SVM with induced kernel

#Nodes 35.75 41.22 39.06 32.63 17.93 2997 19.77 13 21.27
Node attributes cont. cont. cont./lab. cont./lab.  deg. lab. deg. deg. cont. / lab.
q 3 3 1/3 18/3 4 38 135 38 3/3
Method MUTAG NCI1 PROTEINS ENZYMES IMDB-M IMDB-B
k-NN
RPW-2 72.12+1.65 68.90 + 5.45
Net-LSD-h 84.90 65.89 64.89 31.99 40.51 68.04
FGSD 86.47 65.30 41.58 41.14
NetSimile 84.09 66.56 62.45 33.23 40.97 69.20
SVM & GCN

RPW- 74.84 £1.81 74.55£4.19 54.00 £ 7.07
WWL 87.27+£1.50 85.75+0.25 74.28 £ 0.56 X X
FGW 83.26 +10.30 72.82+1.46 X X 48.00 & 3.22 63.80 £ 3.49
FGW-WL 88.42 4+ 5.67 X X X X
WL-OA 87.15+1.82 86.08 +0.27 58.97 £ 0.82 X X
PSCN 83.47+10.26 70.65+2.58 58.34+7.71 X X X




SGML model

Numerical Experiments

o Graph Datasets Datasets  BZR COX2 PROTEINS ENZYMES MUTAG NCI1 IMDB-B IMDB-M CUNEIFORM
#Graphs 405 467 1113 600 188 4110 1000 1500 267
#Nodes 3575 4122 39.06 3263 1793 2997 1977 13 2127
Node attributes cont. cont. cont./lab. cont./lab.  deg. lab. deg. deg. cont. / lab.
q 33 173 1873 4 38 13 88 3/3
* Task of Supervised Classification Method BZR cox2 PROTEINS  ENZYMES CUNEIFORM
RPW: (kNN) 7179+ 4.47 51.66+5.16 54.81 + 12.26
- either k-NN classifier SVM & GCN
RPW- 84.39 + 3.81 7420+ 4.11 48.83 +4.78 64.44 + 10.50
_ <1 WWL 84.42 +2.03 78.29 + 0.47 X
or SVM with induced kernel FGW 77.23+4.86 T455+2.74 71.00 + 6.76
PROPAK 7951 +5.02 77.66+3.95 61.34+4.38 T1.67+5.63 12.59 + 6.67
HGK-SP 76.42+0.72 T2.57+1.18 7578 +0.17 66.36 + 0.37 X
PSCN [K = 10] (GCN) 80.00 + 4.47 7170 +3.57 67.95+ 11.28 26.67 +4.77 25.19 + 7.73




SGML model

* For MUTAG Dataset

10

Visualisation of a Numerical Experiment

t-SNE on WWL ) t-SNE on SW
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Embedding in 2D with t-SNE, comparing WWL and SGML
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* Scalability in running time

Computing times (s)
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Number of samples

Scalability and Ablation study

* Ablative study

Dataset WWL  SGML - SW: SGML - NCA SGML - PW.
Method Ace. A Ace. A Ace. A Ace. A

BZR 78.05 -7.56 82.93 -2.68 83.41 -220 84.39 -1.22
COx2 78.51 -1.26 7830 -1.49  77.66 -2.13 7894 -0.85
MUTAG 83.68 -6.32 86.84 -3.16 87.37 -2.63  90.00

NCI1 80.43 69.03 -3.09 69.66 -2.46 72.90
PROTEINS 71.60 71.34 71.70 70.54
IMDB-B 68.20 - 0.7 68.20 -0.70 67.40 -1.5 68.80 - 0.10
IMDB-M  48.73 42.33 -2.67 42,73 -2.27  44.13 -0.87
ENZYMES 56.00 4433 -4.67 55.33 4483 -4.17

with some theoretical insights!

* Message: it’s scalable, perf are ok,



Now is the time to conclude

* 2) A scalable & simple model to Learn Distances between Attributed Graphs

* -> SGML: a simple, motivated, scalable and efficient, method for (semi-supervised) metric learning between
attributed graphs

* 1) A novel way to combine structure and attributes by Diffusion + OT

* -> Diffusion Wasserstein distance: a powerful method, for unsupervised graph domain adaptation tasks

* We favor simple methods, with a specific objectives and reduced computational costs (& waste)
« Our way forward:
. 1) improve feature extraction thanks to insights from GSP

. 2) more explainability for these graph-based ML methods (see our GraphNEXx project)
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