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Many statistical learning problems on graphs have recently been shown to be amenable to Semi-
Definite Programming (SDP), with community detection and clustering in Gaussian mixture models
as the most striking instances Javanmard et al. (2016). Given the growing range of applications of
SDP-based techniques to machine learning problems, and the rapid progress in the design of efficient
algorithms for solving SDPs, an intriguing question is to understand how the recent advances from
empirical process theory and Statistical Learning Theory can be leveraged for providing a precise
statistical analysis of SDP estimators.

In this talk, we borrow cutting edge techniques and concepts from the Learning Theory lit-
erature, such as fixed point equations and excess risk curvature arguments, which yield general
estimation and prediction results for a wide class of SDP estimators for estimation problems per-
taining to gaphs. From this perspective, we revisit some classical results in community detection
from Guédon and Vershynin (2016) and Fei and Chen (2019b), and we obtain statistical guarantees
for SDP estimators used in signed clustering, angular group synchronization (for both multiplicative
and additive models) and MAX-CUT.
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Part I

BACKGROUND
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REAL VS RANDOM GRAPHS
EXAMPLES WITH LOCAL OR GLOBAL FEATURES

Figure. credit: Vershynin

Some structures are local. 2 / 110



REAL VS RANDOM GRAPHS
EXAMPLES WITH LOCAL OR GLOBAL FEATURES

Figure. credit: Vershynin

Some structures are global.
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REAL VS RANDOM GRAPHS
RANDOM GRAPHS AND THEIR FEATURES

Figure. credit: Vershynin
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REAL VS RANDOM GRAPHS
RANDOM GRAPHS AND THEIR FEATURES

Let us compare with stochastic models ! The first is the Erdoes-Renyi random graph.

Figure. credit: Vershynin 5 / 110



REAL VS RANDOM GRAPHS
RANDOM GRAPHS AND THEIR FEATURES

Let us compare with stochastic models ! A better model for clustered data is the Stochastic Block
Model.

Edges are still independent, but can have different probabilities pij.

I Allows to model networks with structure = communities (clusters).

Example: Stochastic block model with two communities G(n, p, q) :

I Edges within each community: probability p;
I across communities: probability q < p.

6 / 110



REAL VS RANDOM GRAPHS
RANDOM GRAPHS AND THEIR FEATURES

Let us compare with stochastic models ! A better model for clustered data is the Stochastic Block
Model.

Example: Stochastic block model with multiple communities G(n, (pk,k′)) :

I Edges within each community: probability p;
I across communities: probability q < p.

Figure. credit: Vershynin
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CONCENTRATION OF RANDOM GRAPHS
THE ADJACENCY MATRIX APPROACH

Figure. Recovering structures = communities

For inhomogeneous Erdös-Rényi model:

A =
(
Bernoulli

(
pij
))
, EA =

(
pij
)

(1)
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CONCENTRATION OF RANDOM GRAPHS
THE ADJACENCY MATRIX APPROACH

Model Recovery Problem:
I Observe A
I recover EA.

Figure. Model recovery (from a talk by Vershynin)
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CONCENTRATION OF RANDOM GRAPHS
THE ADJACENCY MATRIX APPROACH

Let us consider the simpler problem of identifying the structure of a random graph from a unique
observation of the graph.

Figure. Recovering structures = communities
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CONCENTRATION OF RANDOM GRAPHS
THE ADJACENCY MATRIX APPROACH

Eigenvectors reveal the latent structure !

I If concentration (possibly after regularization)⇒

A ≈ EA

I The Davis-Kahan theorem⇒ eigenvectors satisfy

vi(A) ≈ vi(EA)

AND: Eigenvectors vi(EA) carry information about network structure.
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CONCENTRATION OF RANDOM GRAPHS
THE ADJACENCY MATRIX APPROACH

EA =




p p q q
p p q q
q q p p
q q p p


 has rank 2; v1(EA) =




1
1
1
1


 , v2(EA) =




1
1
−1
−1




v2(EA) encodes community structure ⇒ v2(A) encodes the structure, too.

12 / 110



CONCENTRATION OF RANDOM GRAPHS
THE ADJACENCY MATRIX APPROACH

How will the Davis Kahan theorem help ?

A ≈ EA in a certain way (2)

implies

eigenstructure(A) ≈ eigenstructure(EA) (3)

Theorem 1 (Davis-Kahan sin(Θ) theorem)

Let A = E0A0E0
∗ + E1A1E1

∗ and A + H = F0Λ0F0
∗+ F1Λ1F1

∗ be symmetric matrices with [E0,E1] and
[F0,F1] orthogonal.
If the eigenvalues of A0 are contained in an interval (a, b), and the eigenvalues of Λ1 are excluded from the
interval (a− δ, b + δ) for some δ > 0, then

‖F1
∗E0‖ ≤

‖F1
∗HE0‖
δ

(4)

for any unitarily invariant norm ‖ · ‖.
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CONCENTRATION OF RANDOM GRAPHS
THE ADJACENCY MATRIX APPROACH

Question: Do random graphs concentrate near their "expected" graphs?
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CONCENTRATION OF RANDOM GRAPHS
THE ADJACENCY MATRIX APPROACH

Theorem 2
An inhomogeneous Erdös-Rényi random graph G

(
n,
(
pij
))

with expected degrees npij ∼ d with d & log n
concentrates:

‖A− EA‖ .
√

d w.h.p. while ‖EA‖ ∼ d.

Proof. Simple concentration of
x>(A− EA)y

for fixed x and y. Then, complicated union bound over x, y. �.

Weaker earlier results by Furedi and Komlos (80’s) with d & log4 n. Oliveira also obtained a result in
this spirit in 2010, with ‖A− EA‖ .

√
d log n, using the matrix Bernstein inequality (Tropp).|
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CONCENTRATION OF RANDOM GRAPHS
THE ADJACENCY MATRIX APPROACH

Observation: A random graph G(n, p) with expected degrees d = np� log n does not concentrate !

‖A− EA‖ � ‖EA‖

What is wrong with sparse graphs?

The degrees are wild, do not concentrate near d anymore. High-degree vertices blow up ‖A‖ : some
columns of A are too large.
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CONCENTRATION OF RANDOM GRAPHS
THE ADJACENCY MATRIX APPROACH

Observation: A random graph G(n, p) with expected degrees d = np� log n does not concentrate !

‖A− EA‖ � ‖EA‖
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CONCENTRATION OF RANDOM GRAPHS
THE ADJACENCY MATRIX APPROACH

Regularization and concentration:

Inhomogeneous E-R random graph with d = max npij.

I Regularize vertices with degrees > 2d :
• make all degrees ≤ 2d by reducing the weights of edges arbitrarily.

Theorem 3 (Le-Levina-Vershynin (2015))

The adjacency matrix A′ of the regularized graph concentrates:
∥∥A′ − EA

∥∥ .
√

d w.h.p.
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STRUCTURE ESTIMATION
THE SPECTRAL APPROACH

Recall that : Eigenvectors reveal the latent structure !

Concentration (possibly after regularization)⇒

A ≈ EA

The Davis-Kahan theorem⇒ eigenvectors satisfy

vi(A) ≈ vi(EA)

Moreover : Eigenvectors vi(EA) carry information about network structure.
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STRUCTURE ESTIMATION
THE SPECTRAL APPROACH

EA =




p p q q
p p q q
q q p p
q q p p


 has rank 2; v1(EA) =




1
1
1
1


 , v2(EA) =




1
1
−1
−1




v2(EA) encodes community structure ⇒ v2(A) encodes the structure, too.
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STRUCTURE ESTIMATION
THE SPECTRAL APPROACH

Spectral Clustering Algorithm:

I given a graph with adjacency matrix A,

• Compute the second leading eigenvector of A;

• Recover communities based on the signs of its coefficients.

EA =




p p q q
p p q q
q q p p
q q p p


 has rank 2; v1(EA) =




1
1
1
1


 , v2(EA) =




1
1
−1
−1
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STRUCTURE ESTIMATION
THE SPECTRAL APPROACH

Corollary 1 (Community Detection)

Consider the stochastic block model G(n, p, q) with p = a/n and q = b/n. Suppose

(a− b)2 ≥ Cε(a + b)

Then the regularized spectral clustering algorithm recovers communities up to εn misclassified vertices, and
with high probability.

Proof: This is a consequence of the concentration result of [Le-Levina-Vershynin (2015)], combined
with the Davis Kahan Theorem. �
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STRUCTURE ESTIMATION
THE SPECTRAL APPROACH

Detection threshold

I The condition on (a− b)2 ≥ Cε(a + b) is optimal up to Cε,

• Cε →∞ as ε→ 0.

I No algorithm can succeed if
(a− b)2 ≤ 2(a + b).

I There are algorithms that do better than random guess if

(a− b)2 > 2(a + b).

This is work by Mossel-Neeman-Sly (2013-14) and Massoulié (2013).
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STRUCTURE ESTIMATION
THE SPECTRAL APPROACH
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STRUCTURE ESTIMATION
THE SPECTRAL APPROACH

On a graph, the discrete Laplacian is the n× n matrix

∆ := I −D−1/2AD−1/2

where D is the diagonal matrix with the degrees on the diagonal.

Do Laplacians concentrate as Adjacency matrices ?

I For dense graphs (expected degrees d & log n) , Laplacian concentrates.

I For sparse graphs d� log n, fails to concentrate.

• What’s wrong?
I Low-degree vertices: isolated vertices, trees. (They get overheated.)
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STRUCTURE ESTIMATION
THE SPECTRAL APPROACH

How to regularise for helping Laplacians to concentrate ?

I Connect low-degree vertices to the rest of the graph by light weighted edges; bring up all
degrees to ∼ d.
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STRUCTURE ESTIMATION
THE SPECTRAL APPROACH

Theorem 4 (Concentration of Laplacians)

The Laplacian ∆′ of the regularized graph concentrates !

∥∥∆′ − E∆′
∥∥ . 1√

d
while

∥∥∆′
∥∥ ∼ 1

Proof: Deduced from concentration of regularized adjacency matrices. Box

Application to community detection: use the 2nd eigenvector of the Laplacian.

I Theoretical performance:

• same as for adjacency

I empirically even better.
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Part II

THE SEMI-DEFINITE PROGRAMMING APPROACH
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INTRODUCTION

I Strongest community structure: union of cliques.

I How to fit?

• Maximize correlation between the network and a union of cliques.

I Optimization:

max

Z∈
{

adjacency matrices of a union of

cliques with k edges

} 〈A,Z〉

• where A = adjacency matrix of the network,
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INTRODUCTION

I This is equivalent to

max
Z
〈A,Z〉 : Z ∈ {0, 1}n×n is block-diagonal,

∑

ij

Zij = k. (5)

Lemma 1
A matrix Z ∈ {0, 1}n×n is block diagonal⇔ Z is positive semidefinite.

I A semidefinite (SDP) relaxation:

max
Z
〈A,Z〉 : Z ∈ [0, 1]n×n is positive semidefinite,

∑

ij

Zij = k.
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INTRODUCTION

I General stochastic block model: ∀many communities, ∀ connection probabilities pij, within
communities > p; across communities < q. (Not necessarily low rank!)

Theorem 5 (Guedon and Vershynin)

Consider a general stochastic block model with p = a/n and q = b/n. Suppose

(a− b)2 ≥ Cε(a + b)

Then the SDP (with k = number of edges) recovers communities up to εn misclassified vertices, and with high
probability.

31 / 110



INTRODUCTION

I SemiDefinite Programming is a class of optimization problems which includes linear
programming as a particular case and can be written as
• the set of problems over symmetric (resp. Hermitian) positive semi-definite matrix

variables,
• with

I linear cost function and
I affine constraints,

i.e. optimization problems of the form

max
Z�0

(〈
A,Z

〉
:
〈
Bj,Z

〉
= bj for j = 1, . . . ,m

)
, (6)

where A, B1, . . ., Bm are given matrices.

Figure. SemiDefinite Programming 32 / 110



INTRODUCTION
EARLY HISTORY

I Early use of Semi-Definite programming to statistics can be traced back to Scobey and Kabe
1978 and Fletcher 1981.

I In the same year, Shapiro used SDP in factor analysis Shapiro 1982.

I The study of the mathematical properties of SDP then gained momentum with the introduction
of Linear Matrix Inequalities (LMI) and their numerous applications in control theory, system
identification and signal processing.

I The book Boyd, El Ghaoui, et al. 1994 is the standard reference of these type of results, mostly
obtained in the 90’s.

Figure. SemiDefinite Programming

33 / 110



INTRODUCTION
THE GOEMANS-WILLIAMSON SDP RELAXATION OF MAX-CUT AND ITS LEGACY

I A notable turning point is the publication of Goemans and Williamson 1995 where SDP was
shown to provide a 0.87 approximation to the NP-Hard problem known as MAX-CUT.
• The Max-Cut problem is a clustering problem on graphs which consists in finding two

complementary subsets S and Sc of nodes such that the sum of the weights of the edges
between S and Sc is maximal.

Figure. The Max-Cut problem
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INTRODUCTION
THE GOEMANS-WILLIAMSON SDP RELAXATION OF MAX-CUT AND ITS LEGACY

I In Goemans and Williamson 1995, the authors approach this difficult combinatorial problem by
using what is now known as the Goemans-Williamson SDP relaxation and use the Choleski
factorization of the optimal solution to this SDP in order to produce a randomized scheme
achieving the .87 bound in expectation !

I Moreover, this problem can be seen as one of the first prominent instances where the Laplacian
of a graph is employed in order to provide an optimal bi-clustering in a graph and
• certainly represents for a lot of people the first chapter of a long and fruitful relationship

between clustering, embedding and Laplacians (but ... remember Delorme and Poljak !) .
I Other SDP schemes for approximating hard combinatorial problems are, to name a few, for the

graph coloring problem Karger, Motwani, and Sudan 1998, for satisfiability problem Goemans
and Williamson 1995; Goemans and Williamson 1994. These results were later surveyed in
Lemaréchal, Nemirovskii, and Yurii Nesterov 1995; Goemans 1997 and Wolkowicz 1999.

I The randomized scheme introduced by Goemans and Williamson was then further improved
in order to study more general Quadratically Constrained Quadratic Programmes (QCQP) in
various references, most notably Nesterov 1997; Zhang 2000 and further extended in He et al.
2008.

I Many applications to signal processing are discussed in Olsson, Eriksson, and Kahl 2007, Ma
2010; one specific reduced complexity implementation in the form of an eigenvalue
minimization problem and its application to binary least-squares recovery and denoising is
presented in Chrétien and Corset 2009. 35 / 110



INTRODUCTION
THE GOEMANS-WILLIAMSON SDP RELAXATION OF MAX-CUT AND ITS LEGACY

I Applications of SDP to problems related with machine learning is more recent and probably
started with the SDP relaxation of K-means in Peng and Xia 2005; Peng and Wei 2007 and later
in Ames 2014.

I This approach was then further improved using a refined statistical analysis by Royer 2017 and
Giraud and Verzelen 2018.
• Similar methods have also been applied to community detection Hajek, Wu, and J. Xu

2016; Abbe, Bandeira, and Hall 2015 and for the weak recovery viewpoint, Guédon and
Vershynin 2016.

I This last approach was also re-used via the kernel trick for the point cloud clustering Chrétien,
Dombry, and Faivre to appear.

I Another incarnation of SDP in machine learning is the extensive use of nuclear norm-penalized
least-squares costs as a surrogate for rank-penalization in low-rank recovery problems such as
matrix completion in recommender systems, matrix compressed sensing, natural language
processing and quantum state tomography; these topics are surveyed in Davenport and
Romberg 2016.

I The problem of manifold learning was also addressed using SDP and is often mentioned as one
of the most accurate approaches to the problem, let aside its computational complexity; see
Weinberger, Packer, and Saul 2005; Weinberger and Saul 2006b; Weinberger and Saul 2006a;
Hegde, Sankaranarayanan, and Baraniuk 2012. Connections with the design of fast converging
Markov-Chains were also exhibited in Sun et al. 2006. 36 / 110



Part III

ANALYSIS OF SDP ESTIMATORS USING PIXED POINT AND

CURVATURE
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MATHEMATICAL FORMULATION OF THE PROBLEM

I The general problem we study can be stated as follows. Let A be a random matrix in Rn×n and
C ⊂ Rn×n be a constraint.

I The object that we want to recover, for instance, the community membership vector in
community detection, is related to an oracle defined as

Z∗ ∈ arg max
Z∈C

〈
EA,Z

〉
, (7)

where 〈
A,B

〉
= Tr(AB̄>) =

∑
AijB̄ij when A,B ∈ Cn×n

where z̄ is the conjugate of z ∈ C.

I We would like to estimate Z∗,

• from which we can ultimately retrieve the object that really matters to us

I (for instance, by considering a singular vector associated to the largest singular value of Z∗).
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MATHEMATICAL FORMULATION OF THE PROBLEM

I One way to go is to consider the following natural estimator of Z∗ given by:

Ẑ ∈ arg max
Z∈C

〈
A,Z

〉
, (8)

which is simply obtained by replacing the unobserved quantity EA in

Z∗ ∈ arg max
Z∈C

〈
EA,Z

〉
, (9)

by the observed matrix A.
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MATHEMATICAL FORMULATION OF THE PROBLEM

I As pointed out above, in many situations, Z∗ is not the object we want to estimate, but

• there is a straightforward relation between Z∗ and the object we seek to recover.

• For instance, consider the community detection problem, where the goal is to recover the
class community vector x∗ ∈ {−1, 1}n of n nodes.

I Here, when C is well chosen, there is a close relation between Z∗ and x∗, given by Z∗ = x∗(x∗)>, e.g.
x∗

2

i = 1⇔ x∗i ∈ {−1, 1}
.

I We therefore need a final step to estimate x∗ using Ẑ, for instance, by letting x̂ denote a top eigenvector of
Ẑ, and then using the Davis-Kahan "sin-Theta" Theorem Davis and Kahan 1970; Yu, Wang, and
Samworth 2015 to control the estimation of x∗ by x̂ from the one of Z∗ by Ẑ.

I When the constraint C is of the form

C = {Z ∈ Rn×n : Z � 0,
〈
Z,Bj

〉
= bj, j = 1, . . . ,m}

where B1, . . . ,Bm ∈ Rn×n and Z � 0 is notation for “ Z is positive semidefinite”, then

Ẑ ∈ arg max
Z∈C

〈
A,Z

〉
,

is a semidefinite programming (SDP) problem Boyd and Vandenberghe 2004
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GOAL OF THE PAPER

I The aim of the present work is to present a general approach to the study of the statistical
properties of SDP-based estimators defined by

Ẑ ∈ arg max
Z∈C

〈
A,Z

〉
,

I In particular, using our framework, one is able to obtain new (non-asymptotic) rates of
convergence or exact reconstruction properties for a wide class of estimators obtained as a
solution of a semidefinite program like these.

I Specifically, our goal is to show that the solution to this problem can be analyzed in a statistical
way when EA is only partially and noisily observed through A.

I Our analysis extends in a straightforward way to more complex sets C than SDP constraints !
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MAIN GENERAL RESULTS FOR THE STATISTICAL ANALYSIS OF SDP
ESTIMATORS

I From a statistical point of view, the task remains to estimate in the most efficient way the oracle
Z∗.

I The point of view we will use to evaluate how far Ẑ is from Z∗ is coming from the Learning
Theory literature.

• We therefore see Ẑ as an empirical risk minimizer (ERM) built on a single observation A,
where the loss function is the linear one Z ∈ C → `Z(A) = −

〈
A,Z

〉
,

• The most important requirement will be that the oracle Z∗ is indeed the one minimizing
the risk function Z ∈ C → E`Z(A) over C.

I Having this setup in mind, we can use all the machinery developed in Learning Theory to
obtain rates of convergence for the ERM (here Ẑ) toward the oracle (here Z∗).
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MAIN GENERAL RESULTS FOR THE STATISTICAL ANALYSIS OF SDP
ESTIMATORS

I We will introduce one key quantity that will be shown to control the rate of convergence of the
ERM: a fixed point complexity parameter !

I This type of parameter carries all the statistical complexity of the problem, and even though it
is usually easy to set up, its computation can be tedious since it requires to control, with large
probability, the supremum of empirical processes indexed by “localized classes”.

I Define this complexity fixed point related to the problem as

Definition 1
Let 0 < ∆ < 1. The fixed point complexity parameter at deviation 1−∆ is

r∗(∆) = inf


r > 0 : P


 sup

Z∈C:
〈
EA,Z∗−Z

〉
≤r

〈
A− EA,Z− Z∗

〉
≤ (1/2)r


 ≥ 1−∆


 . (10)
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MAIN GENERAL RESULTS FOR THE STATISTICAL ANALYSIS OF SDP
ESTIMATORS

I Fixed point complexity parameters have been extensively used in Learning Theory since the
introduction of the localization argument

• When they can be computed, they are preferred to the (global) analysis developed by
Chervonenkis and Vapnik (VC complexity).

• VC analysis always yields slower rates since

sup
Z∈C

〈
A− EA,Z− Z∗

〉

is an upper bound for r∗(∆)

r∗(∆) = inf


r > 0 : P


 sup

Z∈C:
〈
EA,Z∗−Z

〉
≤r

〈
A− EA,Z− Z∗

〉
≤ (1/2)r


≥ 1−∆


 . (11)

since {Z ∈ C :
〈
EA,Z∗ − Z

〉
≤ r} ⊂ C.

I The gap between the two global and local analysis can be important since fast rates cannot be
obtained using the VC approach, whereas the localization argument resulting in fixed points
may yield fast rates of convergence or even exact recovery results.
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MAIN GENERAL RESULTS FOR THE STATISTICAL ANALYSIS OF SDP
ESTIMATORS

I An example of a Vapnik-Chervonenkis’s type of analysis of SDP estimators can be found in
Guédon and Vershynin 2016 for the community detection problem.

I An improvement of the latter approach has been obtained in Fei and Chen 2019 thanks to a
localization argument – even though it is not stated in these words

I On the other hand, Fixed point based analysis were proved to be optimal (in a minimax sense)
when the noise A− EA is Gaussian Lecué and Mendelson 2013 and under mild conditions on
the complexity of C.
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MAIN GENERAL RESULTS FOR THE STATISTICAL ANALYSIS OF SDP
ESTIMATORS

I Our main general statistical bound on SDP estimators is as follows.

Theorem 6
We assume that the constraint C is star-shaped in Z∗. Then, for all 0 < ∆ < 1, with probability at least
1−∆, it holds true that

〈
EA,Z∗ − Ẑ

〉
≤ r∗(∆).

I Theorem 6 applies to any type of setup where an oracle Z∗ is estimated by an estimator Ẑ such
as defined above.

I Its result shows that Ẑ is almost a maximizer of the true objective function Z→
〈
EA,Z

〉
over C

up to r∗(∆).

• In particular, when r∗(∆) = 0, Ẑ is exactly a maximizer such as Z∗ and, in that case, we can
work with Ẑ as if we were working with Z∗ without any loss.

• In this "exact reconstruction case", the information contained about A on E[A] is enough for
knowing Z∗ exactly.
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MAIN GENERAL RESULTS FOR THE STATISTICAL ANALYSIS OF SDP
ESTIMATORS

I Let Ω∗ be the event onto which for all Z ∈ C if
〈
EA,Z∗ − Z

〉
≤ r∗(∆) then

〈
A− EA,Z− Z∗

〉
≤ (1/2)r∗(∆).

I By Definition of r∗(∆), we have P[Ω∗] ≥ 1−∆.

I Let Z ∈ C be such that
〈
EA,Z∗ − Z

〉
> r∗(∆) and define Z′ such that

Z′ − Z∗ =
(
r∗(∆)/

〈
EA,Z∗ − Z

〉)
(Z− Z∗).

We have
〈
EA,Z∗ − Z′

〉
= r∗(∆) and Z′ ∈ C because C is convex.

I Therefore, on the event Ω∗,
〈
A− EA,Z′ − Z∗

〉
≤ (1/2)r∗(∆) and therefore

〈
A− EA,Z− Z∗

〉
≤ (1/2)

〈
EA,Z∗ − Z

〉
.

I It therefore follows that on the event Ω∗, if Z ∈ C is such that
〈
EA,Z∗ − Z

〉
> r∗(∆) then

〈
A,Z− Z∗

〉
≤ (−1/2)

〈
EA,Z∗ − Z

〉
< −r∗(∆)/2

which implies that
〈
A,Z− Z∗

〉
< 0 and therefore Z does not maximize Z→

〈
A,Z

〉
over C.

I As a consequence, we necessarily have
〈
EA,Z∗ − Ẑ

〉
≤ r∗(∆) on the event Ω∗ (which holds with

probability at least 1−∆).
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MAIN GENERAL RESULTS FOR THE STATISTICAL ANALYSIS OF SDP
ESTIMATORS

I The proof makes strong use of two important concepts originally introduced in Learning
Theory, namely
• the complexity of the problem comes from the one of the local subset

C ∩ {Z :
〈
EA,Z∗ − Z

〉
≤ r∗(∆)}

• the “radius” r∗(∆) of the localization is solution of a fixed point equation.

I In order to put this approach to work on concrete problems, we need to understand
• the shape of the local subsets C ∩ {Z :

〈
EA,Z∗ − Z

〉
≤ r}, r > 0 and

• the maximal oscillations of the empirical process Z→
〈
A− EA,Z− Z∗

〉
indexed by these

local subsets.
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MAIN GENERAL RESULTS FOR THE STATISTICAL ANALYSIS OF SDP
ESTIMATORS

I Let us introduce an easier to compute proxy for r∗(∆), defined as

r∗G(∆) = inf

(
r > 0 : P

[
sup

Z∈C:G(Z∗−Z)≤r

〈
A− EA,Z− Z∗

〉
≤ (1/2)r

]
≥ 1−∆

)
. (12)

for some function G : Rn×n → R.

I Most of the time the G function is a norm like the `1-norm or a power of a norm such as the `2
norm to the square.
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MAIN GENERAL RESULTS FOR THE STATISTICAL ANALYSIS OF SDP
ESTIMATORS

I Function G should play the role of a simple description of the curvature of the excess risk
function locally around Z∗; that is formalized in the next assumption.

Assumption 1

For all Z ∈ C, if 〈
EA,Z∗ − Z

〉
≤ r∗G(∆)

then 〈
EA,Z∗ − Z

〉
≥ G(Z∗ − Z).

I Typical examples of curvature functions G will have the form G(Z∗−Z) = θ ‖Z∗ − Z‖κ for some
κ ≥ 1, θ > 0 and some norm ‖·‖.

• In that case, the parameter κ was initially called the margin parameter Tsybakov 2003;
Mammen and Tsybakov 1999.

I Even though the relation given in Assumption 1 has been typically referred to as a margin
condition or Bernstein condition in the Learning Theory literature, we will rather call it a local
curvature assumption, following Guédon and Vershynin 2016 and Chinot, Guillaume, and
Matthieu 2018
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MAIN GENERAL RESULTS FOR THE STATISTICAL ANALYSIS OF SDP
ESTIMATORS

I Using our curvature Assumption 1, we see that r∗G(∆) should be easier to compute than r∗(∆)
and r∗(∆) ≤ r∗G(∆)

• This is because of the definition of r∗G(∆) and

{Z ∈ C :
〈
EA,Z∗ − Z

〉
≤ r∗G(∆)} ⊂ {Z ∈ C : G(Z∗ − Z) ≤ r∗G(∆)}.

I Based on these remarks, we get the following

Corollary 2

We assume that the “local curvature” Assumption 1 holds for some 0 < ∆ < 1. With probability at least
1−∆, it holds true that

r∗G(∆) ≥
〈
EA,Z∗ − Ẑ

〉
≥ G(Z∗ − Ẑ).
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MAIN GENERAL RESULTS FOR THE STATISTICAL ANALYSIS OF SDP
ESTIMATORS

Finally, when proving a “local curvature” property such as in Assumption 1 is too difficult we will
replace Assumption 1 by

Assumption 2

For all Z ∈ C, if G(Z∗ − Z) ≤ r∗G(∆) then
〈
EA,Z∗ − Z

〉
≥ G(Z∗ − Z).

We can then obtain

Theorem 7
We assume that the constraint C is star-shaped in Z∗ and that the “local curvature” Assumption 2 holds for
some 0 < ∆ < 1. We assume that the G function is continuous, G(0) = 0 and

G(λ(Z∗ − Z)) ≤ λG(Z∗ − Z)

for all λ ∈ [0, 1] and Z ∈ C. With probability at least 1−∆, it holds true that

G(Z∗ − Ẑ) ≤ r∗G(∆).
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MAIN GENERAL RESULTS FOR THE STATISTICAL ANALYSIS OF SDP
ESTIMATORS

As a consequence,
I Theorem 6, Corollary 2 and Theorem 7 are the three tools at our disposal to study the

performance of SDP estimators depending on the deepness of understanding we have on the
problem.

I The best approach is given by Theorem 6 when it is possible to compute efficiently the
complexity fixed point r∗(∆). If the latter approach is too complicated (likely because
understanding the geometry of the local subset C ∩ {Z :

〈
EA,Z∗ − Z

〉
≤ r}, r > 0 may be

difficult) then one may resort to find a curvature function G of the excess risk locally around Z∗.
I In that case, both Corollary 2 and Theorem 7 may apply depending on the hardness to find a

local curvature function G on an “excess risk neighborhood” (see Assumption 1) or a
“G-neighborhood” (see Assumption 2).

I Finally, if no local approach can be handled (likely because describing the curvature of the
excess risk in any neighborhood of Z∗ or controlling the maximal oscillations of the empirical
process Z→

〈
EA− A,Z∗ − Z

〉
locally are too difficult) then one may resort ultimately to a

global approach which follows from Theorem 6.

53 / 110



MAIN GENERAL RESULTS FOR THE STATISTICAL ANALYSIS OF SDP
ESTIMATORS

I Results like Theorem 6, Corollary 2 and Theorem 7 appeared in many papers on ERM in
Learning Theory such as in Koltchinskii 2011; Bartlett and Mendelson 2006; Massart 2007;
Lecué and Mendelson 2013.

I In all these results, typical loss functions such as the quadratic or logistic loss functions, were
not linear ones, such as the one we are using here. Therefore, our problem is easier (and as a
result, our three general results above at not so difficult to prove).

I What is much more complicated here than in other more classical problems in Learning Theory
is the computation of the fixed point because
• the stochastic processes Z→

〈
A− EA,Z− Z∗

〉
may be far from being a Gaussian process if

the noise matrix A− EA is complicated and

• the local sets
{Z ∈ C :

〈
EA,Z∗ − Z

〉
≤ r}

or
{Z ∈ C : G(Z∗ − Z) ≤ r}

for r > 0 maybe very hard to describe in a simple way.

I Instrumental results are available in the literature to circumvent this kind of problems; see Fei
and Chen 2019.
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REVISITING TWO RESULTS FROM THE COMMUNITY DETECTION LITERATURE

I As we saw in the introduction, one challenging aspect of the community detection problem
arises in the setting of sparse graphs.

I Many of the existing algorithms, which enjoy theoretical guarantees, do so in the relatively
dense regime for the edge sampling probability, where the expected average degree is of the
order Θ(log n).

I The problem becomes challenging in very sparse graphs with bounded average degree.
• To this end, Guédon and Vershynin 2016

I proposed the semidefinite relaxation for the community detection problem (and more) we saw earlier

I showed that it can recover a solution with any given relative accuracy even in the setting of very sparse
graphs with average degree of order O(1).
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REVISITING TWO RESULTS FROM THE COMMUNITY DETECTION LITERATURE

I A subset of the existing literature for community detection and clustering relies on spectral
methods, which consider the adjacency matrix associated to a graph, and employ its
eigenvalues, and especially eigenvectors, in the analysis process or to propose efficient
algorithms to solve the task at hand.

56 / 110



REVISITING TWO RESULTS FROM THE COMMUNITY DETECTION LITERATURE

I We now focus on the community detection problem on random graphs under the general
stochastic block model.

I The results of Guédon and Vershynin 2016 and Fei and Chen 2019 can be approached using our
Theorem 6.

I Thanks to this theorem, it is possible to simplify the proof of Fei and Chen 2019, by avoiding
both the peeling argument and the use of the bound from Guédon and Vershynin 2016.
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REVISITING TWO RESULTS FROM THE COMMUNITY DETECTION LITERATURE

We first recall the definition of the generalized stochastic block model (SBM). We consider a set of
vertices V = {1, · · · ,n}, and assume it is partitioned into K communities C1, · · · , CK of arbitrary sizes
|C1| = l1, · · · , |CK| = lK.

Definition 2
For any pair of nodes i, j ∈ V, we denote by i ∼ j when i and j belong to the same community (i.e., there exists
k ∈ {1, . . . ,K}) such that i, j ∈ Ck), and we denote by i 6∼ j if i and j do not belong to the same community.

I For each pair (i, j) of nodes from V, we draw an edge between i and j with a fixed probability pij
independently from the other edges.

I We assume that there exist numbers p and q satisfying 0 < q < p < 1, such that




pij > p, if i ∼ j and i 6= j,
pij = 1, if i = j,
pij < q, otherwise.

(13)

I We denote by A = (Ai,j)1≤i,j,≤n the observed symmetric adjacency matrix, such that, for all
1 ≤ i ≤ j ≤ n, Aij is distributed according to a Bernoulli of parameter pij.
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REVISITING TWO RESULTS FROM THE COMMUNITY DETECTION LITERATURE

I We will estimate its membership matrix Z̄ via the following SDP estimator

Ẑ ∈ arg max
Z∈C

〈
A,Z

〉
,

where

C = {Z ∈ Rn×n,Z � 0,Z ≥ 0,diag(Z) � In,

n∑

i,j=1

Zij ≤ λ}

and

λ =

n∑

i,j=1

Z̄ij =

K∑

k=1

|Ck|2

(the number of nonzero elements in the membership matrix Z̄).

I The motivation for this approach stems from the fact that the membership matrix Z̄ is actually
the oracle, i.e., Z∗ = Z̄, where

Z∗ ∈ arg max
Z∈C

〈
EA,Z

〉
.
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REVISITING TWO RESULTS FROM THE COMMUNITY DETECTION LITERATURE

I Guédon and Vershynin 2016 use the observation that, for all r > 0, it holds true that

sup
Z∈C:

〈
EA,Z∗−Z

〉
≤r

〈
A− EA,Z− Z∗

〉 (a)

≤ sup
Z∈C

〈
A− EA,Z− Z∗

〉 (b)

≤ 2KG ‖A− EA‖cut , (14)

where ‖·‖cut is the cut-norm.

I The cut-norm ‖·‖cut of a real matrix A = (aij)i∈R,j∈C with a set of rows indexed by R and a set of
columns indexed by C, is the maximum, over all I ⊂ R and J ⊂ C, of the quantity |∑i∈I,j∈J aij|.

• It is also the operator norm of A from `∞ to `1 and the “injective norm” in the orginal
Grothendieck “résumé” Grothendieck 1956; Pisier 2012 and KG is the Grothendieck
constant (Grothendieck’s inequality is used in (b), see Pisier 2012; Vershynin 2018).
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REVISITING TWO RESULTS FROM THE COMMUNITY DETECTION LITERATURE

I The next step in the proof of Guédon and Vershynin 2016 is a high-probability upper bound on
‖A− EA‖cut which follows from Bernstein’s inequality and a union bound since

‖A− EA‖cut = max
x,y∈{−1,1}n

〈
A− EA, xy>

〉
,

which implies that for all t > 0,

‖A− EA‖cut ≤ tn(n− 1)/2

with probability at least 1− exp
(
2n log 2− (n(n− 1)t2)/(16p̄ + 8t/3)

)
where

p̄
def
= 2/[n(n− 1)]

∑

i<j

pij(1− pij).

I The resulting upper bound on the fixed point obtained in Guédon and Vershynin 2016 is,

r∗(∆) ≤ (8/3)KG(2n log(2) + log(1/∆)). (15)
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REVISITING TWO RESULTS FROM THE COMMUNITY DETECTION LITERATURE

I Finally, under the assumption of Theorem 1 in Guédon and Vershynin 2016 (i.e., for some some
ε ∈ (0, 1), n ≥ 5.104/ε2, max(p(1− p), q(1− q)) ≥ 20/n, p = a/n > b/n = q and
(a− b)2 ≥ 2.104ε−2(a + b)), for ∆ = e35−n we obtain (using the general result in Theorem 6) with
probability at least 1−∆, the bound

〈
EA,Z∗ − Ẑ

〉
≤ r∗(∆) ≤ εn2 = ε ‖Z∗‖2

2 ,

which is the result from Theorem 1 in Guédon and Vershynin 2016
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REVISITING TWO RESULTS FROM THE COMMUNITY DETECTION LITERATURE

I Finally, Guédon and Vershynin 2016 uses a (global) curvature property of the excess risk:

Lemma 2
For all Z ∈ C,

〈
EA,Z∗ − Z

〉
≥ [(p− q)/2] ‖Z∗ − Z‖1.

Therefore, a (global– that is for all Z ∈ C) curvature assumption holds for a G function which is
here the `n×n

1 norm, a margin parameter κ = 1 and θ = (p− q)/2 for the community detection
problem.

I However, this curvature property is
• not used to compute a “better” fixed point parameter
• but only to obtain a `n×n

1 estimation bound since

∥∥∥Ẑ− Z∗
∥∥∥

1
≤
(

2
p− q

)〈
EA,Z∗ − Ẑ

〉
≤ 16KG(2n log(2) + log(1/∆))

3(p− q)
.

I The latter bound together with the sin-Theta theorem allow the authors of Guédon and
Vershynin 2016 to obtain estimation bound for the community membership vector x∗.
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REVISITING TWO RESULTS FROM THE COMMUNITY DETECTION LITERATURE

I The approach from Fei and Chen 2019 improves upon the one in Guédon and Vershynin 2016
because it uses a localization argument

I Indeed, the authors from Fei and Chen 2019 obtain high-probability upper bound on the
quantity

sup
Z∈C:‖Z∗−Z‖1≤r

〈
A− EA,Z− Z∗

〉

depending on r.

I This yields to exact reconstruction result in the “dense” case and exponentially decaying rates
of convergence in the “sparse” case.

• This is a typical example where the localization argument shows its advantage upon the
global approach.

I However, the argument from Fei and Chen 2019 also uses an unnecessary peeling argument
together with an unnecessary a priori upper bound on

∥∥∥Ẑ− Z∗
∥∥∥

1

I It appears that this peeling argument and this a priori upper bound on
∥∥∥Ẑ− Z∗

∥∥∥
1

can be
avoided thanks to our approach from Theorem 6.

I This improves the probability estimate and simplifies the proofs (since the result from Guédon
and Vershynin 2016 is not required anymore neither is the peeling argument).
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OTHER EXAMPLES

We now study three other problems, namely

I signed clustering,

I angular synchronization, and

I MAX-CUT.
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OTHER EXAMPLES
A SIGNED STOCHASTIC BLOCK MODEL (SSBM)

I We focus on the problem of clustering a K-weakly balanced graphs

I A signed graph is K-weakly balanced if and only if all the edges are positive, or the nodes can
be partitioned into K ∈ N disjoint sets such that positive edges exist only within clusters, and
negative edges are only present across clusters.

I We consider a signed stochastic block model (SSBM) similar to the one introduced in
Cucuringu et al. n.d., where we are given

• a graph G with n nodes {1, . . . ,n}which are divided into K communities, {C1, · · · , CK},
such that, in the noiseless setting,

I edges within each community are positive and

I edges between communities are negative.
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OTHER EXAMPLES
A SIGNED STOCHASTIC BLOCK MODEL (SSBM)

I The only information available to the user is given by a n× n sparse censored signed adjacency
matrix A constructed as follows:

• A is symmetric, with Aii = 1 for all i = 1, . . . ,n, and for all 1 ≤ i < j ≤ n, Aij = sij(2Bij − 1)
where

Bij ∼





Bern(p) if i ∼ j

Bern(q) if i 6∼ j
and sij ∼ Bern(δ),

for some 0 ≤ q < 1/2 < p ≤ 1 and δ ∈ (0, 1). Moreover, all the variables Bij, sij for
1 ≤ i < j ≤ n are assumed independent.

I Our aim is to recover the community membership matrix (or cluster matrix) Z̄ = (Z̄ij)i,j≤n, with




Z̄ij = 1 when i ∼ j and

Z̄ij = 0 when i 6∼ j.

using only the observed censored adjacency matrix A.
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OTHER EXAMPLES
A SIGNED STOCHASTIC BLOCK MODEL (SSBM)

I Our approach is similar in nature to the one used by spectral methods in community detection.

I We first observe that for α := δ(p + q− 1) and J = (1)n×n we have Z̄ = Z∗ where

Z∗ ∈ arg max
Z∈C

〈
EA− αJ,Z

〉
(16)

and C = {Z ∈ Rn×n : Z � 0,Zij ∈ [0, 1],Zii = 1, i = 1, . . . ,n}.
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OTHER EXAMPLES
A SIGNED STOCHASTIC BLOCK MODEL (SSBM)

I Since we do not know EA and α, we should estimate both of them. We will estimate EA with A
but, for simplicity, we will assume that α is known. The resulting estimator of the cluster matrix
Z̄ is

Ẑ ∈ arg max
Z∈C

〈
A− αJ,Z

〉
(17)

which is indeed a SDP estimator and therefore Theorem 6 (or Corollary 2 and Theorem 7) may
be used to obtain statistical bounds for the estimation of Z∗ from (16) by Ẑ.
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OTHER EXAMPLES
A SIGNED STOCHASTIC BLOCK MODEL (SSBM)

I Our main result concerns the reconstitution of the K communities from the observation of the
matrix A.

• In order to avoid solutions with some communities of degenerated size (too small or too
large) we consider the following assumption.

Assumption 3

Up to constants, the elements of the partition C1 t · · · t CK of {1, . . . ,n} are of same size: there are absolute
constant c0, c1 > 0 such that for any k ∈ [K], n/(c1K) ≤ |Ck| = lk ≤ c0n/K.
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OTHER EXAMPLES
A SIGNED STOCHASTIC BLOCK MODEL (SSBM)

We are now ready to state the main result on the estimation of the cluster matrix Z∗ from (16) by the
SDP estimator Ẑ from (17).

Theorem 8
There is an absolute positive constant c0 such that the following holds. Grant Assumption 3. Assume that

nνδ ≥ log n, (18)

sn ≥ c0K2ν (19)

and
K log(2eKn)

n
≤ max

(
θ2

ρ
,

9ρ
32

)
. (20)

Then, with probability at least 1− exp(−δνn)− 3/(2eKn), exact recovery holds true, i.e., Ẑ = Z∗.

We recall the constants defined above :

s := δ(p− q)2, θ := δ(p− q), ρ := δmax{1− δ(2p− 1)2, 1− δ(2q− 1)2}, ν := max{2p− 1, 1− 2q}.
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OTHER EXAMPLES
A SIGNED STOCHASTIC BLOCK MODEL (SSBM)

I The last condition (20) basically requires that the number of clusters K is at most n/ log n.

I If this condition is dropped out, then we do not have anymore exact reconstruction but only a
certified exponential rate of convergence:
• there exists a universal constant C2 such that, with probability at least

1− exp(−δνn)− 3/(2eKn),
∥∥∥Z∗ − Ẑ

∥∥∥
1
≤ 2en2

c1θ
exp

(
− sn

C2K

)
. (21)
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OTHER EXAMPLES
A SIGNED STOCHASTIC BLOCK MODEL (SSBM)

I This shows that there is a phase transition in the dense case:

• exact reconstruction is possible when K . n/ log n and,

• otherwise, when K & n/ log n we only have a control of the estimation error with an
exponential convergence rate.

I We then get results of the same nature as in Fei and Chen 2019, or in the more recent paper
M. Xu et al. 2020.

• In those two articles, the authors show the existence of a phase transition, with exact
recovery in the regime K . n/log(n), and exponential rate with exponent ' −sn/K
otherwise, where s is some measurement of the signal/noise ratio of the problem.

• Note that the estimation bound is given with respect to the ln×n
1 norm. This is not a

surprise since it is the behaviour of the excess risk over C and Z∗.
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OTHER EXAMPLES
APPLICATION TO ANGULAR GROUP SYNCHRONIZATION

I We now introduce the group synchronization problem as well as a stochastic model for this
problem. We consider a SDP relaxation of the original problem (which is exact) and construct
the associated SDP estimator such as in (10).

I The angular synchronization problem consists of estimating n unknown angles θ1, · · · , θn (up to
a global shift angle) given a noisy subset of their pairwise offsets (θi − θj)[2π], where [2π] is the
modulo 2π operation.

I The pairwise measurements can be realized as the edge set of a graph G, typically modeled as
an Erdös-Renyi random graph Singer 2011.
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OTHER EXAMPLES
APPLICATION TO ANGULAR GROUP SYNCHRONIZATION

I The aim of this section is to show that the angular synchronization problem can be analyzed
using our methodology.

I In order to keep the presentation as simple as possible, we assume that all pairwise offsets are
observed up to some Gaussian noise: we are given δij = (θi − θj + σgij)[2π] for all 1 ≤ i < j ≤ n
where (gij : 1 ≤ i < j ≤ n) are n(n− 1)/2 i.i.d. standard Gaussian variables and σ > 0 is the
noise variance.

I We may rewrite the problem as follows: we observe a n× n complex matrix A defined by

A = S ◦ [x∗(x∗)>] where S = (Sij)n×n,Sij =





eισgij if i < j
1 if i = j

e−ισgij if i > j
, (22)

ι denotes the imaginary number such that ι2 = −1, x∗ = (x∗i )n
i=1 ∈ Cn, x∗i = eιθi , i = 1, . . . ,n, x̄

denotes the conjugate vector of x and S ◦ [x∗(x∗)>] is the element-wise product (Sijxix̄j)n×n.

I In particular, S is a Hermitian matrix (i.e. S̄> = S) and ESij = exp(−σ2/2) for i 6= j and ESii = 1
if i = j.

I We want to estimate (θ1, . . . , θn) (up to a global shift) from the matrix of data A.
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OTHER EXAMPLES
APPLICATION TO ANGULAR GROUP SYNCHRONIZATION

I Estimating (θi)
n
i=1 up to global angle shift is equivalent to estimating the vector x∗ = (eιθi)n

i=1.
I The latter is, up to a global rotation of its coordinates, the unique solution of the following

maximization problem

arg max
x∈Cn:|xi|=1

{
x̄> EA x

}
= {(eι(θi+θ0))n

i=1 : θ0 ∈ [0, 2π)}. (23)

I Let us now rewrite (23) as a SDP problem.
• For all x ∈ Cn, we have x̄>EAx = tr(EAX) =

〈
EA,X

〉
where X = xx̄> and

{Z ∈ Cn×n : Z = xx̄T, |xi| = 1} = {Z ∈ Hn : Z � 0,diag(Z) = 1n, rank(Z) = 1}where Hn is
the set of all n× n Hermitian matrices and 1n ∈ Cn is the vector with all coordinates equal
to 1.

• It is therefore straightforward to construct a SDP relaxation of (23) by dropping the rank
constraint.

• It appears that this relaxation is exact since, for C = {Z ∈ Hn : Z � 0,diag(Z) = 1n},
arg max

Z∈C

〈
EA,Z

〉
= {Z∗}, (24)

where Z∗ = x∗(x∗)>.
76 / 110



OTHER EXAMPLES
APPLICATION TO ANGULAR GROUP SYNCHRONIZATION

I Finally, as we only observe A, we consider the following SDP estimator of Z∗

Ẑ ∈ arg max
Z∈C

〈
A,Z

〉
. (25)
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OTHER EXAMPLES
APPLICATION TO ANGULAR GROUP SYNCHRONIZATION

I Our main result concerns the estimation of the matrix of offsets Z∗ = x∗(x∗)> from the
observation of the matrix A.

I This result is then used to estimate (up to a global phase shift) the angular vector x∗ = (e−ιθi)n
i=1.

I Our first result follows from Corollary 2.

Theorem 9
Let 0 < ε < 1. If σ ≤

√
log(εn4) then, with probability at least

1− exp(−εσ4n(n− 1)/2), it holds true that

(e−σ
2/2/2) ‖Z∗ − Z‖2

2 ≤
〈
EA,Z∗ − Z

〉
≤ (128/6)

√
εσ4n(n− 1). (26)
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OTHER EXAMPLES
APPLICATION TO ANGULAR GROUP SYNCHRONIZATION

Once we have an estimator Ẑ for the oracle Z∗, we can extract an estimator x̂ for the vector of phases
x∗ by considering a top eigenvector (i.e. an eigenvector associated with the largest eigenvalue) of Ẑ.
It is then possible to quantify the estimation properties of x∗ by x̂ using a sin-Theta theorem and
Theorem 9.

Corollary 3

Let x̂ be a top eigenvector of Ẑ with Euclidean norm ‖x̂‖2 =
√

n. Let 0 < ε < 1 and assume that
σ ≤

√
log(εn4). We have the existence of a universal constant c0 > 0 (which is the constant in the

Davis-Kahan theorem for Hermitian matrices) such that, with probability at least 1− exp(−εσ4n(n− 1)/2),
it holds true that

min
z∈C:|z|=1

‖x̂− zx∗‖2 ≤ 8c0
√

2/3ε1/4eσ
2/4σ2√n. (27)
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OTHER EXAMPLES
APPLICATION TO THE MAX-CUT PROBLEM

I Let A0 ∈ {0, 1}n×n be the adjacency (symmetric) matrix of an undirected graph G = (V,E0),
where V := {1, . . . ,n} is the set of the vertices and the set of edges is
E0 := E ∪ E> ∪ {(i, i) : A0

ii = 1}where E := {(i, j) ∈ V2 : i < j and A0
ij = 1} and

E> = {(j, i) : (i, j) ∈ E}.

I We assume that G has no self loop so that A0
ii = 0 for all i ∈ V. A cut of G is any subset S of

vertices in V.

I For a cut S ⊂ V, we define its weight by cut(G,S) := (1/2)
∑

(i,j)∈S×S̄ A0
ij, that is the number of

edges in E between S and its complement S̄ = V\S.

I The MAX-CUT problem is to find the cut with maximal weight:

S∗ ∈ argmax
S⊂V

cut(G,S). (28)
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OTHER EXAMPLES
APPLICATION TO THE MAX-CUT PROBLEM

I The MAX-CUT problem is a NP-complete problem but Goemans and Williamson 1995
constructed a 0.878 approximating solution via a SDP relaxation. Indeed, one can write the
MAX-CUT problem in the following way.

I For a cut S ⊂ V, we define the membership vector x ∈ {−1, 1}n associated with S by setting
xi := 1 if i ∈ S and xi = −1 if i /∈ S for all i ∈ V. We have
cut(G,S) = (1/4)

∑n
i,j=1 A0

ij(1− xixj) := cut(G, x) and so solving (28) is equivalent to solving

x∗ ∈ argmax
x∈{−1,1}n

cut(G, x). (29)

I Since (xixj)i,j = xx>, the latter problem is also equivalent to solving

max


1

4

n∑

i,j=1

A0
ij(1− Zij) : rank(Z) = 1,Z � 0,Zii = 1


 (30)

which admits a SDP relaxation by removing the rank 1 constraint.
I This yields the following SDP relaxation problem of MAX-CUT from Goemans and

Williamson 1995:
Z∗ ∈ argmin

Z∈C

〈
A0,Z

〉
(31)

where C := {Z ∈ Rn×n : Z � 0,Zii = 1,∀i = 1, . . . ,n}.
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OTHER EXAMPLES
APPLICATION TO THE MAX-CUT PROBLEM

I Unlike the other examples from the previous sections, the SDP relaxation in (31) is not exact,
except for bipartite graphs; see Khot and Naor 2009; Gärtner and Matoušek 2012 for more
details.

I Nevertheless, thanks to the approximation result from Goemans and Williamson 1995, we can
use our methodology to estimate Z∗ and then deduce an approximate optimal cut.

I The MAX-CUT problem is therefore a good setup for us to test our methodology in a context
where the SDP relaxation is not exact, but still widely used in practice.
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OTHER EXAMPLES
APPLICATION TO THE MAX-CUT PROBLEM

I Thus the type of question we want to answer here is: what can we say in a setup where only
partial or noisy information is available on E[A], and when the SDP relaxation associated with
E[A] is also not exact?

I This differs from the previous setup where exactness of the SDP relaxation holds, and this
interesting peculiarity is one of the reasons why we have chosen to present this problem here.

I Our motivation stems from the observation that, in many situations, the adjacency matrix A0 is
only partially observed, but nevertheless, it might be interesting to find an approximating
solution to the MAX-CUT.
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OTHER EXAMPLES
APPLICATION TO THE MAX-CUT PROBLEM

I Let us then introduce a stochastic model for the partial information available on E[A], the
adjacency matrix here.

I We observe A = S ◦ A0 = (sijA0
ij)1≤i,j≤n a “masked” version of A0, where S ∈ Rn×n is symmetric

with upper triangular matrix filled with i.i.d. Bernoulli entries: for all i, j ∈ V such that i ≤ j,
Sij = Sji = sij where (sij)i≤j is a family of i.i.d. Bernoulli random variables with parameter
p ∈ (1/2, 1).

I Let B := −(1/p)A so that E[B] = −A0.

I We can write Z∗ as an oracle since Z∗ ∈ arg maxZ∈C
〈
EB,Z

〉
and so we estimate Z∗ via the SDP

estimator Ẑ ∈ arg maxZ∈C
〈
B,Z

〉
.
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OTHER EXAMPLES
APPLICATION TO THE MAX-CUT PROBLEM

I Our first aim is to quantify the cost we pay by using Ẑ instead of Z∗ in our final choice of cut.

I It appears that the fixed point used in Theorem 6 may be used to quantify this loss

r∗(∆) = inf


r > 0 : P


 sup

Z∈C:
〈
EB,Z∗−Z

〉
≤r

〈
B− EB,Z− Z∗

〉
≤ (1/2)r


 ≥ 1−∆


 . (32)
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OTHER EXAMPLES
APPLICATION TO THE MAX-CUT PROBLEM

I We denote the optimal values of the MAX-CUT problem associated with the graph G and its
SDP relaxation by

SDP(G) := (1/4)
〈
A0, J − Z∗

〉
= max

Z∈C
1
4

∑

i,j

A0
i,j(1− Zij) and MAXCUT(G) := cut(G,S∗)

where S∗ is a solution of (28) and J = (1)n×n.
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OTHER EXAMPLES
APPLICATION TO THE MAX-CUT PROBLEM

I Our first result is to show how the 0.878 approximating result from Goemans and Williamson
1995 is downgraded by the incomplete information we have on the graph (we only partially
observed the adjacency matrix A0 via the masked matrix A).

Theorem 10
For all 0 < ∆ < 1. With probability at least 1−∆ (with respect to the masked S),

SDP(G) ≥ E
[
cut(G, x̂)|Ẑ

]
≥ 0.878SDP(G)− 0.878r∗(∆)

4
.

I To make the notation more precise, x̂ is the sign vector of Ĝ which is a centered Gaussian
variable with covariance Ẑ.

I In that context, E
[
cut(G, x̂)|Ẑ

]
is the conditional expectation according to Ĝ for a fixed Ẑ.

I Moreover, the probability “at least 1−∆" that we obtain is w.r.t. the random masks, that is to
the randomness in A.
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OTHER EXAMPLES
APPLICATION TO THE MAX-CUT PROBLEM

I Let us now frame Theorem 10 into the following perspective. If we had known the entire
adjacency matrix (which is the case when p = 1), then we could have used Z∗ instead of Ẑ. In
that case, for x? the sign vector of G? ∼ N (0,Z∗), we know from Goemans and Williamson 1995
that

SDP(G) ≥ E [cut(G, x?)] ≥ 0.878SDP(G). (33)

I Therefore, Theorem 10 characterizes the price we pay for not observing the entire adjacency
matrix A0, but only a masked version A of it.

I It is an interesting output of Theorem 10 to observe that the fixed point r∗(∆) measures, in a
quantitative way, this loss.

I If we were able to identify scenarios of p and E for which r∗(∆) = 0, that would prove that there
is no loss for partially observing A0 in the MAX-CUT problem.

I The approach we use to control r∗(∆) is the global one, which does not allow for exact
reconstruction (that is, to show that r∗(∆) = 0).
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OTHER EXAMPLES
APPLICATION TO THE MAX-CUT PROBLEM

Let us now turn to an estimation result of Z∗ by Ẑ via an upper bound on r∗(∆).

Theorem 11
With probability at least 1− 4−n:

〈
EB,Z∗ − Ẑ

〉
≤ r∗(4−n) ≤ 2n

√
(2 log 4)(1− p)(n− 1)

p
+

8n log 4
3

.

In particular, it follows from the approximation result from Theorem 10 and the high-probability
upper bound on r∗(∆) from Theorem 11 that, with probability at least 1− 4−n

E
[
cut(G, x̂)|Ẑ

]
≥ 0.878SDP(G)− 0.878

4

(
2n

√
(2 log 4)(1− p)(n− 1)

p
+

8n log 4
3

)
. (34)
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OTHER EXAMPLES
APPLICATION TO THE MAX-CUT PROBLEM

I This result is non-trivial only when the right-hand side term is strictly larger than 0.5 · SDP(G),
which is the performance of a random cut.

I As a consequence, (34) shows that one can still do better than randomness even in an
incomplete information setup for the MAX-CUT problem when p, n and SDP(G) are such that

0.378SDP(G) >
0.878

4

(
2n

√
(2 log 4)(1− p)(n− 1)

p
+

8n log 4
3

)
.

I For instance, when p is like a constant, it requires SDP(G) to be larger than c0n3/2 (for some
absolute constant c0) and when p = 1− 1/n, it requires SDP(G) to be at least c0n (for some
absolute constant c0).
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OTHER EXAMPLES
APPLICATION TO THE MAX-CUT PROBLEM

Remark 1

I To get exact recovery, that is r∗(∆) = 0, in the MAX-CUT problem (which shows that there is no loss for
the MAX-CUT problem by observing only a masked version of the adjacency matrix), we have to
develop a local approach, as for the

1. Signed Clustering and

2. the Group Synchronization problems.

I To that end, we would need to solve the following two problems:

1. Find a curvature for the objective function Z→
〈
EB,Z∗ − Z

〉
and

2. Study the oscillations of the empirical process Z→
〈
EB− B,Z∗ − Z

〉
.

We leave those two difficult problems for future research.
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Part IV

EXPERIMENTS
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NUMERICAL EXPERIMENTS
SIGNED CLUSTERING

I Consider the following experimental setup.
• We generate synthetic networks following the signed stochastic block model (SSBM) with

K = 5 communities.
• To quantify the effectiveness of the SDP relaxation, compare the accuracy of a suite of

algorithms from signed clustering literature,
I before the SDP relaxation (i.e., when we perform these algorithms directly on A) and
I after the SDP relaxation (i.e., when we perform the very same algorithms on Ẑ).

• Overall, (??) essentially counts the fraction of intra-cluster and inter-cluster edge violations,
with respect to the full ground truth matrix.
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NUMERICAL EXPERIMENTS
SIGNED CLUSTERING

I In terms of the signed clustering algorithms compared, we consider the following algorithms
from the literature.

• One straightforward approach is to simply rely on the spectrum of the observed adjacency
matrix A. Kunegis et al. 2010 proposed spectral tools for clustering, link prediction, and
visualization of signed graphs, by solving a 2-way “signed” ratio-cut problem based on the
combinatorial Signed Laplacian Hou 2005 L̄ = D̄− A, where D̄ is a diagonal matrix with
D̄ii =

∑n
i=1 |Aij|.

• The same authors proposed signed extensions for the case of the random-walk Laplacian
L̄rw = I − D̄−1A, and the symmetric graph Laplacian L̄sym = I − D̄−1/2AD̄−1/2, the latter of
which is particularly suitable for skewed degree distributions.
• Finally, the last algorithm we considered is BNC of Chiang, Whang, and Dhillon 2012, who

introduced a formulation based on the Balanced Normalized Cut objective

min{x1,...,xK}∈I

(
K∑

c=1

xT
c (D+ − A)xc

xT
c D̄xc

)
, (35)

which, in light of the decomposition
D+ − A = D+ − (A+ − A−) = D+ − A+ + A− = L+ + A−, is effectively minimizing the
number of violations in the clustering procedure.
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NUMERICAL EXPERIMENTS
SIGNED CLUSTERING

I In our experiments, we first compute the error rate γbefore of all algorithms on the original SSBM
graph, and then we repeat the procedure but with the input to all signed clustering algorithms
being given by the output of the SDP relaxation, and denote the resulting recovery error by
γafter.

I The third column of the next Figure shows the difference in errors γδ = γbefore − γafter between
the first and second columns, while the fourth column contains a histogram of the error
differences γδ.
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NUMERICAL EXPERIMENTS
SIGNED CLUSTERING

[!htp]

Before After Delta Histogram

A

L̄

L̄rw

L̄sym

BNC

Figure. Summary of results for the Signed Clustering problem. The first column denotes the recovery error
before the SDP relaxation step, meaning that we consider a number of signed clustering algorithms from the
literature which we apply directly the initial adjacency matrix A. The second column contains the results
when applying the same suite of algorithms after the SDP relaxation. The third column shows the difference
in errors between the first and second columns, while the fourth column contains a histogram of the delta
errors. This altogether illustrates the fact the SDP relaxation does improve the performance of all signed
clustering algorithms except L̄. Results are averaged over 20 runs.
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NUMERICAL EXPERIMENTS
SIGNED CLUSTERING

I These experiments altogether illustrate the fact that the SDP relaxation does improve the
performance of all signed clustering algorithms, except L̄, and could effectively be used as a
denoising pre-processing step.
• One potential reason why the SDP pre-processing step does not improve on the accuracy

of L̄ could stem from the fact that L̄ has a good performance to begin with on examples
where the clusters have equal sizes and the degree distribution is homogeneous.
• It would be interesting to further compare the results in settings with skewed degree

distributions, such as the classical Barabási-Albert model Albert and Barabási 2002.
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NUMERICAL EXPERIMENTS
MAX-CUT

I For the MAX-CUT problem, we consider two sets of numerical experiments.
I First, we consider a version of the stochastic block model which essentially perturbs a complete

bipartite graph

B =

∣∣∣∣
0n1×n1 1n1×n2

1n2×n1 0n2×n2

∣∣∣∣ , (36)

where 1n1×n2 (respectively, 0n1×n2) denotes an n1 × n2 matrix of all ones, respectively, all zeros.
I In our experiments, we set n1 = n2 = n

2 , and fix n = 500. We perturb B by deleting edges across
the two partitions, and inserting edges within each partition.

I More specifically, we generated the full adjacency matrix A0 from B by adding edges
independently with probability η within each partition (i.e., along the diagonal blocks in (36)).
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NUMERICAL EXPERIMENTS
MAX-CUT

I Finally, we denote by A the masked version we observe, A = A0 ◦ S, where S denotes the
adjacency matrix of an Erdős-Rényi(n, δ) graph. The graph shown in Figure 13 is an instance of
the above generative model.

Figure. Illustration of MAX-CUT in the setting of a perturbation of a complete bipartite graph.

I Note that, for small values of η, we expect the maximum cut to occur across the initial partition
PB in the clean bipartite graph B, which we aim to recover as we sparsify the observed graph A.
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NUMERICAL EXPERIMENTS
MAX-CUT

I As expected, for a fix level of noise η, we are able to recover the hypothetically optimal
MAX-CUT, for suitable levels of the sparsity parameter.

(a) Adjusted Rand Index.

Figure. Numerical results for MAX-CUT on a perturbed complete bipartite graph, as we vary the noise
level η and the sampling sparsity δ. Results are averaged over 20 runs.
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NUMERICAL EXPERIMENTS
MAX-CUT

I The heatmap shows the computational running time, as we vary the two parameters, showing
that the MANOPT solver takes the longest to solve dense noisy problems, as one would expect.

(a) Running times (MANOPT).

Figure. Numerical results for MAX-CUT on a perturbed complete bipartite graph, as we vary the noise
level η and the sampling sparsity δ. Results are averaged over 20 runs.
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NUMERICAL EXPERIMENTS
ANGULAR SYNCHRONIZATION

(a) Spectral relaxation.

Figure. Recovery rates (MSE (??) - the lower the better) for angular synchronization with n = 500,
under the Gaussian noise model, as we vary the noise level σ and the sparsity p of the measurement
graph. Results are averaged over 20 runs.
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NUMERICAL EXPERIMENTS
ANGULAR SYNCHRONIZATION

(a) SDP relaxation (solved via MANOPT).

Figure. Recovery rates (MSE (??) - the lower the better) for angular synchronization with n = 500,
under the Outlier noise model, as we vary the noise level γ and the sparsity p of the measurement
graph. Results are averaged over 20 runs. 103 / 110
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